Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

539 results about "Thermal oxide" patented technology

Thermal Oxide or SiO2 is one of the "building block" films used in making both simple and complex semiconductor devices. Thermal oxide is grown at high temperatures from 800°C - 1100°C using either a "Wet" or "Dry" growth method.

Si PRECURSORS FOR DEPOSITION OF SiN AT LOW TEMPERATURES

Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
Owner:ASM IP HLDG BV

Small Area, Robust Silicon Via Structure and Process

A semiconductor structure includes: at least one silicon surface wherein the surface can be a substrate, wafer or other device. The structure further includes at least one electronic circuit formed on each side of the at least one surface; and at least one conductive high aspect ratio through silicon via running through the at least one surface. Each through silicon via is fabricated from at least one etch step and includes: at least one thermal oxide dielectric for coating at least some of a sidewall of the through silicon via for a later etch stop in fabrication of the through silicon via.
Owner:GLOBALFOUNDRIES US INC

Device structures for a metal-oxide-semiconductor field effect transistor and methods of fabricating such device structures

Device structures for a metal-oxide-semiconductor field effect transistor (MOSFET) that is suitable for operation at relatively high voltages and methods of forming same. The MOSFET, which is formed using a semiconductor-on-insulator (SOI) substrate, includes a channel in a semiconductor body that is self-aligned with a gate electrode. The gate electrode and semiconductor body, which are both formed from the monocrystalline SOI layer of the SOI substrate, are separated by a gap that is filled by a gate dielectric layer. The gate dielectric layer may be composed of thermal oxide layers grown on adjacent sidewalls of the semiconductor body and gate electrode, in combination with an optional deposited dielectric material that fills the remaining gap between the thermal oxide layers.
Owner:GLOBALFOUNDRIES INC

Semiconductor device structure and methods of making

A process for fabricating a semiconductor device having reduced capacitance for high frequency circuit protection is disclosed that comprises first forming an n+ buried layer in a p-type substrate by depositing n-type dopant on the top surface of the substrate and then drive in or by implanting n-type material into the substrate, and then growing an n-type epitaxial layer atop the n+ buried layer as the device layer. Trenches that surrounds the device region with depth extending from the top surface, going through the n+ buried layer and reaching down to the substrate are then formed and then an n+ layer on the sidewalls of the trenches is formed by diffusion or ion implantation. The trenches are then filled by growing a layer of thermal oxide on the sidewalls of the trenches and followed by deposition of plasma enhanced oxide, nitride, TEOS oxide CVD oxide, or polysilicon into the trenches and then planarizing the top surface by plasma etch back or polishing. Then n+ region of the device is formed by forming an oxide layer on the top surface of the device layer and then etching the oxide by photolithography, then depositing n-type dopant material and then driving in by high temperature diffusion. Finally p+ region of the device is formed by etching the oxide using photolithography, then depositing p-type dopant material by solid or gas phase deposition or ion implantation and then driving in by high temperature diffusion so that the breakdown voltage between cathode and anode of the device is set to a targeted voltage for high frequency circuit protection.
Owner:HU JERRY +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products