Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

134results about How to "High glass forming ability" patented technology

Abrasive particles and methods of making and using the same

InactiveUS20030110706A1Facilitates formation and homogeneityOxide formationPigmenting treatmentOther chemical processesOxideMetal
Abrasive particles comprising ceramic (including glasses, crystalline ceramics, and glass-ceramics) comprising (on a theoretical oxide basis) Al2O3 and at least one other metal oxide (e.g., REO and; REO and at least one of ZrO2 or HfO2) and methods of making the same. The abrasive particles can be incorporated into a variety of abrasive articles, including bonded abrasives, coated abrasives, nonwoven abrasives, and abrasive brushes.
Owner:3M INNOVATIVE PROPERTIES CO

Systems and methods for implementing bulk metallic glass-based macroscale compliant mechanisms

Systems and methods in accordance with embodiments of the invention implement bulk metallic glass-based macroscale compliant mechanisms. In one embodiment, a bulk metallic glass-based macroscale compliant mechanism includes: a flexible member that is strained during the normal operation of the compliant mechanism; where the flexible member has a thickness of 0.5 mm; where the flexible member comprises a bulk metallic glass-based material; and where the bulk metallic glass-based material can survive a fatigue test that includes 1000 cycles under a bending loading mode at an applied stress to ultimate strength ratio of 0.25.
Owner:CALIFORNIA INST OF TECH

Active amorphous brazing filler metal for brazing ZrB2-SiC ceramic materials, preparation method for active amorphous brazing filler metal and brazing process

The invention discloses active amorphous brazing filler metal for brazing ZrB2-SiC ceramic materials, a preparation method for the active amorphous brazing filler metal and a brazing process, particularly relates to Cu-Ti-Ni-Zr high-temperature active amorphous brazing filler metal for brazing ZrB2-SiC ultra-high-temperature ceramic materials, a preparation method for the Cu-Ti-Ni-Zr high-temperature active amorphous brazing filler metal and a brazing process, and belongs to brazing filler metal in the amorphous and metallurgy fields. The components of the brazing filler metal comprise, by atomic percentage, 36.0-42.0% of Cu, 30.0-35.0% of Ti, 16.0-23.0% of Zr and the balance Ni. The melting temperature of the active amorphous brazing filler metal is 1110-1150 K, and the brazing temperature is 1183-1273 K. The Cu-Ti-Ni-Zr high-temperature active amorphous brazing filler metal obtained through the rapid condensation technology has good wettability. The room temperature shearing strength of the ZrB2-SiC ultra-high-temperature ceramic materials brazed through the amorphous brazing filler metal in a vacuum brazing mode can be as high as 160 MPa and much higher than that of Cu-based and Ag-based brazing filler metal.
Owner:ANHUI UNIVERSITY OF TECHNOLOGY AND SCIENCE

Fe-Based Bulk Amorphous Alloy Compositions Containing More Than 5 Elements And Composites Containing The Amorphous Phase

Disclosed is a Fe-based bulk amorphous alloy composition which forms a bulk amorphous substance due to its excellent amorphous formability when it is cooled to a temperature lower than its glass transition temperature from the liquid state at a relatively low cooling rate of 1000 K / s or less, has high warm processability in a low temperature range owing to its supercooled liquid region of 20K or higher and has excellent fluidity in the liquid state and thereby good castability. The Fe-based multi-element bulk amorphous alloy composition is represented by a formula of Feα, CβSiγBxPyMa, in which M is at least one element selected from Ti (titanium), Cr (chromium), Mo (molybdenum), Nb (niobium), Zr (Zirconium), Ta (tantalum), W (tungsten) and V (vanadium), α, β, γ, x, y, and a each represent atomic % of iron (Fe), Carbon (C), silicon (Si), boron (B), phosphorus (P) and the selected metal element, in which α is 100-(β+γ+x+y+a) atomic %, β is 6 atomic % or more and 13 atomic % or less, γ is 1 atomic % or more and 5 atomic % or less, x is 4.5 atomic % or more and 9.5 atomic % or less, y is 3 atomic % or more and 10 atomic % or less and a is 0.1 atomic % or more and 6 atomic % or less.
Owner:POHANG IRON & STEEL CO LTD

Bulk nickel-silicon-boron glasses bearing iron

Ni—Fe—Si—B and Ni—Fe—Si—B—P metallic glass forming alloys and metallic glasses are provided. Metallic glass rods with diameters of at least one, up to three millimeters, or more can be formed from the disclosed alloys. The disclosed metallic glasses demonstrate high yield strength combined with high corrosion resistance, while for a relatively high Fe contents the metallic glasses are ferromagnetic.
Owner:APPLE INC

Annealing-induced extensive solid-state amorphization in metallic films

InactiveUS20050028900A1High glass forming abilityExtensive amorphous structureSolid-stateMicrometer
An thin film alloy based on chemical elements with high glass forming ability is disclosed. The alloy is deposited as a thin film from a source of substantially the same chemical composition. Within the deposited thin film, amorphization is induced extensively up to decades of micrometers in size during controlled annealing. Such controllable extensive amorphization throughout the thin film is useful to regulate the proportion of amorphous phase to crystalline phase, establish the structure / property relationships and thus tailor specific properties.
Owner:NATIONAL TAIWAN OCEAN UNIVERSITY

Method for preparing ultrahard erosion-resistant amorphous steel coating

InactiveCN101812657AGood corrosion resistanceGood glass forming abilityMolten spray coatingScrapCorrosion
The invention provides a method for preparing ultrahard erosion-resistant amorphous steel coating, which relates to an amorphous steel alloy with good glass-forming capability and the high strength, high hardness and excellent corrosion resistance and erosion resistance of the amorphous steel alloy, in particular to a preparation method for amorphous steel coating and the potential application fields of the amorphous steel coating. The method is characterized in that: amorphous steel powder is prepared by utilizing the ultrasonic gas atomization technique, the amorphous steel coating is prepared by utilizing high-speed three-electrode plasma spraying, the technique is flexible, the cost is low, and industrialization can be easily implemented. The high-performance amorphous steel coating obtained by the method has properties such as compact structure, low oxygen content, extremely high hardness, high corrosion resistance, excellent erosion resistance and the like, and has a great application prospect in fields such as hard chromium substitution, ships, oil and gas fields, hydraulic facilities and nuclear waste treatment. In addition, the possible application range of the technique is wider, and the technique can provide good concept and method for protective costing preparation and has certain guiding significance.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Alloy with high glass forming ability and alloy-plated metal material using same

An alloy with a high glass forming ability characterized by containing a group of elements A with atomic radii of less than 0.145 nm of a total of 20 to 85 atm %, a group of elements B with atomic radii of 0.145 nm to less than 0.17 nm of a total of 10 to 79.7 atm %, and a group of elements C with atomic radii of 0.17 nm or more of a total of 0.3 to 15 atm %; when the elements with the greatest contents in the group of elements A, group of elements B, and group of elements C are respectively designated as the “element a”, “element b”, and “element c”, by the ratio of the content of the element a in the group of elements A (for example, Zn and / or Al), the ratio of the content of the element b in the group of elements B (for example, Mg), and the ratio of the content of the element c in the group of elements C (for example, Ca) all being 70 atm % or more; and by the liquid forming enthalpy between any two elements selected from the element a, element b, and element c being negative.
Owner:NIPPON STEEL CORP

Ce-Ga-Cu-Al bulk amorphous alloy

The invention discloses Ce-Ga-Cu-Al bulk amorphous alloy which has a structural formula of Ce[70-x]Ga8Cu22Alx, wherein x is atomic percent of Al and is not less than 1 and not more than 6. Compared with corresponding ternary Ce-Ga-Cu bulk amorphous alloy, the Ce-Ga-Cu-Al bulk amorphous alloy has the characteristics that both the glass forming ability and the thermal stability are improved, and the excellent property of relatively low glass-transition temperature of Ce-Ga-Cu alloy is still kept; the Ce-Ga-Cu-Al bulk amorphous alloy is favorable for promoting relatively wide application of Ce amorphous alloy.
Owner:HEFEI UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products