Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

482 results about "Sensor materials" patented technology

Sensor platform using a horizontally oriented nanotube element

Sensor platforms and methods of making them are described, and include platforms having horizontally oriented sensor elements comprising nanotubes or other nanostructures, such as nanowires. Under certain embodiments, a sensor element has an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes, and, under certain embodiments, it comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing a collection of nanotubes on the structure; defining a pattern within the nanotube collection; removing part of the collection so that a patterned collection remains to form a sensor element; and providing circuitry to electrically sense the sensor's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under certain embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning. Under certain embodiments, a large-scale array includes multiple sensors.
Owner:NANTERO

Phase change sensor

A device is disclosed which is a highly sensitive and selective sensor. The device is comprised of a sensor material secured into a fixed position on substrate, a deformable arm and a signaling component which creates a detectable signal in response to movement of the arm. The sensitivity of the device is enhanced by using a sensor material which undergoes a dramatic change in volume which may be accompanied by a phase change in response contact with a target such a molecule of interest. The selectivity of the device is enhanced by incorporating highly specific binding receptors (e.g. antibodies) into the sensor material which receptors bind to specific targets (e.g. peptide epitopes). The binding of the target molecule to the receptor causes the sensor material to change dramatically in volume thereby moving the arm causing the signaling component (e.g. a piezoresistor) to create a detectable signal (e.g. change in resistance) thereby indicating the present of the target.
Owner:CANTIMER

Quartz crystal microbalance sensors and semiconductor manufacturing process systems comprising same

A sensor device for detecting the presence of a gas species in a gas environment susceptible to the presence of same. The sensor device may include a piezoelectric crystal coated with a sensor material having adsorptive affinity for the gas species, with an electric oscillator arranged for applying an oscillating electric field to the piezoelectric crystal to generate an output frequency therefrom indicative of the presence of the gas species when present in the gas environment, when the gas environment is exposed to the piezoelectric crystal. Another aspect of the invention involves a porous polymeric material that may be employed as a sensor material on a piezoelectric crystal sensor device, as well as a quartz microbalance holder that enables reactor gas monitoring. The sensor device alternatively may comprise an optical sensor arranged in a non-contaminating fashion in relation to the gas environment being monitored.
Owner:LIFE SAFETY GERMANY

Flexible fingerprint sensor materials and processes

A flexible fingerprint sensor laminate comprising: a layer of flexible substrate having a front surface and a back surface, at least a domain of electrically conductive material deposited on the front surface, a protective hard coating layer that covers the domain of electrically conductive material, and a plurality of sensor electrodes deposited preferably on the back surface and related circuitry (e.g. integrated circuit for driving and sensing). Preferably, the layer of flexible substrate is no greater than 20 μm in thickness, the domain of electrically conductive material has a thickness no greater than 2 μm, the protective hard coating has a thickness no greater than 1 μm, and the laminate has a surface sheet resistance no greater than 200 Ohm per square and surface scratch resistance no less than 3 H. The laminate exhibits good scratch resistance, low sheet resistance, good flexibility and mechanical integrity. The invention also provides a biometric sensor, such as a fingerprint sensor. The invention further provides a process for producing such a sensor laminate.
Owner:GLOBAL GRAPHENE GRP INC

Chemical sensor

A sensor device is formed from a metal film having a plurality of openings, a sensor material positioned within each of the openings, a light source that emits light having a first wavelength, and a light detector that detects light emitted from the light source and transmitted through or reflected from the openings. The plurality of openings are arranged periodically in a first direction in the metal film, and both a size of each of the plurality of openings and an interval thereof in the first direction are equal to or less than the wavelength of the light.
Owner:CANON KK

Electrically Non-interfering Printing for Electronic Devices Having Capacitive Touch Sensors

A capacitive sensor (200) for a touch sensitive electronic device (800) includes at least one graphic (401) visible to a user. The graphic (401) is configured so as to be non-electrically interfering with the electrode array of the capacitive sensor (200). A substrate (101), configured to transmit light, has a layer of capacitive sensor material (201) deposited thereon. The layer of capacitive sensor material (201) is electrically conductive and pellucid. A layer of selectively disposed electrically conductive material (202) is then electrically coupled to the layer of capacitive sensor material (201). The layer of selectively disposed electrically conductive material (202) is arranged as a graphic, which may be a logo, brand, or other mark. The layer of selectively disposed electrically conductive material (202) has a reflectivity that is greater than the layer of capacitive sensor material (201) so as to make the graphic (401) visible to a user.
Owner:GOOGLE TECH HLDG LLC

Microelectromechanical system based sensors, sensor arrays, sensing systems, sensing methods and methods of fabrication

A microelectromechanical system (MEMS) based sensor comprises: a substrate defining a plane; a first conductive material layer having a first stress, a first portion of the first conductive material layer being connected to the substrate and extending in a substantially parallel direction to the plane defined by the substrate and a second portion being disconnected from the substrate and extending in a substantially non-parallel direction to the plane defined by the substrate; and a sensor material layer formed over at least the second portion of the first conductive material layer, the sensor material layer having a second stress that is less than the first stress of the first conductive material layer. The stresses form a stress gradient that bends the second portion of the first conductive material layer and the sensor material layer formed over the second portion of the first conductive material layer away from the substrate.
Owner:XEROX CORP

Acoustic wave array chemical and biological sensor

An acoustic wave sensor array device is provided for the detection, identification, and quantification of chemicals and biological elements dispersed in fluids. The sensor array device is capable of the simultaneous characterization of a fluid for multiple analytes of interest. A substrate has a plurality of channels formed therein and a sensor material layer applied in a bottom of the channels. The sensor material layer has a shear acoustic wave speed lower than a shear acoustic wave speed in said substrate. The channels may have the same material in each channel or different materials in at least two of the channels. A surface acoustic wave transducer and at least one surface acoustic wave reflector, or at least two transducers is formed on a surface of the substrate opposite the channels at a portion of the substrate that is thinned by the channels, so that the acoustic tracks of the surface acoustic wave device extend along the channels. The response of the surface acoustic wave depends on the response of the sensor material to a sensed fluid supplied to the channels.
Owner:SENSANNA

Fiber optic gas sensor

A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.
Owner:UNIVERSITY OF PITTSBURGH +1

In-situ synthesis method for nano tin dioxide/carbon nano tube composite material

The invention discloses an in-situ synthesis method for a nano tin dioxide / carbon nano tube composite material, which mainly uses an inorganic tin salt, a carbon nano tube and an alkali source as raw materials. The experimental process mainly comprises the steps of precursor preparation, hydrothermal reaction, precipitate washing and drying and the like. The in-situ synthesis method for the nano tin dioxide / carbon nano tube composite material has the advantages that: a hydrothermal method is adopted to realize the in-situ deposition and the growth of the nano tin dioxide on the surface of the carbon nano tube; the obtained SnO2 nano particles have small and uniform particle size (less than 10nm), are well-crystallized, are uniformly coated on the surface of the carbon nano tube, and are tightly combined with the carbon nano tube; the composite material has potential application prospect in the aspects of a gas sensor material, an anode material of a lithium ion battery and the like. The method has no addition of any surface active agent, has simple and easily-obtained materials, simple process without pollution, short preparation period, mild reaction condition and low cost, and is suitable for large-scale production, so the method is an environment-friendly synthesis method.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

Method for manufacturing PDLC-based electro-optic modulator using spin coating

InactiveUS6866887B1Reduce and eliminate thickness and electro-optical variationSpraying apparatusLaminationWater basedEmulsion
Electro-optic structures are constructed by spin coating water based emulsions or solvent based sensor materials, preferably a solvent-based polymer dispersed liquid crystal (PDLC), onto a substrate under conditions of controlled solvent evaporation. In a particular process, the uniformity of the PDLC coating is achieved by 1) spin coating in a semi-sealed chamber, 2) “converting” a square substrate into round substrate by using a fixture; 3) providing a controllable distance between the substrate and a spin coater top cover; and 4) providing a controllable solvent evaporation rate.
Owner:PHOTON DYNAMICS

Low cost capacitive liquid level sensor

A capacitive liquid level sensor material, which includes a first thin, flexible, elongated insulating substrate of indeterminate length having a continuous sensing capacitor printed thereon. The sensing capacitor has a repeating interdigitated capacitive pattern formed by two separate electrodes printed on the substrate. There is a second thin, flexible, elongated insulating substrate of indeterminate length joined to the first substrate to electrically isolate the sensing capacitor, and the electrodes coplanar. The second substrate has a graphic ink pattern printed thereon. The joined first and second substrates are arranged to be wound up into a roll of at least several turns. The sensor material is then cut to length and terminated with a crimp type connector to produce a sensor of the desired length.
Owner:MILONE CHRISTOPHER J

Acoustic wave array chemical and biological sensor

An acoustic wave sensor array device is provided for the detection, identification, and quantification of chemicals and biological elements dispersed in fluids. The sensor array device is capable of the simultaneous characterization of a fluid for multiple analytes of interest. A substrate has a plurality of channels formed therein and a sensor material layer applied in a bottom of the channels. The sensor material layer has a shear acoustic wave speed lower than a shear acoustic wave speed in said substrate. The channels may have the same material in each channel or different materials in at least two of the channels. A surface acoustic wave transducer and at least one surface acoustic wave reflector, or at least two transducers is formed on a surface of the substrate opposite the channels at a portion of the substrate that is thinned by the channels, so that the acoustic tracks of the surface acoustic wave device extend along the channels. The response of the surface acoustic wave depends on the response of the sensor material to a sensed fluid supplied to the channels.
Owner:SENSANNA

Biochip sensor surface carrying polyethylene glycolated nanoparticles

The invention provides high sensitivity bioassay sensor systems in which non-specific adsorption of impurities such as, for example, proteins, in biological samples is inhibited. Polyethylene glycolated particles enclosing metal or semi-conductor which is in common with the sensor material are used for amplification.
Owner:JAPAN SCI & TECH CORP

Method for fabricating electro-optic light modulator

In an electro-optic light modulator requiring an electro-optical sensor material such as polymer dispersed liquid crystal, or PDLC is directly coated on an optical glass substrate with a transparent electrode, such as indium tin oxide (ITO) and an optional layer of passivation coating such as silicon dioxide (SiO2) on its surface. A thin layer of polymeric adhesive is coated on top of PDLC layer and then this two-layer coating is laminated with a dielectric mirror on a polyester film (Mylar™) preferably with the assistance of a vacuum.
Owner:PHOTON DYNAMICS

MEMS (Micro-Electromechanical System) sensor encapsulation structure and encapsulation method thereof

The invention relates to an MEMS sensor encapsulation structure and an encapsulation method thereof, which are used for encapsulating an MEMS sensor. The MEMS sensor encapsulation structure is characterized by comprising a ceramic base, a side wall and a top cap, wherein a plurality of metal bonding pads are respectively arranged on a top layer and a bottom layer of the ceramic base; the metal bonding pads on the top layer of the ceramic base are connected with leads of the MEMS sensor; the MEMS sensor is arranged on the ceramic base; the metal bonding pads on the bottom layer of the ceramic base are connected with an external circuit; the ceramic base adopts one-layer or multi-layer perpendicularly interconnected structure; the side wall and the top cap are both made of kovar alloy. According to the invention, the ceramic base of which coefficient of thermal expansion is approximate to that of the MEMS sensor material is selected as the encapsulation material, in order to reduce influence of the base expansion stress to the MEMS sensor; meanwhile, the ceramic base can be utilized to realize one-layer perpendicular interconnection or multi-layer perpendicular interconnection; the system-level integration between the MEMS sensor and the peripheral circuit can be realized within a small area; high-density system-level encapsulation can be realized; the encapsulation flexibility and the expansibility of the MEMS sensor can be realized.
Owner:INST OF GEOLOGY & GEOPHYSICS CHINESE ACAD OF SCI

Sensor system and methods for improved quantitation of environmental parameters

A system and method employing optical disk drives for quantitative analysis of chemical and biochemical parameters, in which sensor materials disposed on an optical disk are responsive to physical, chemical, biochemical, and other parameters in the environment. The light interacts with the sensor materials when the light propagates through the sensor material, reflects off the optical media's reflective layer, and propagates back through the sensor region. The interacted light is captured by a photodetector, which outputs a response analog signal, for example, an analog voltage signal, which is indicative of a condition of the environment to which the sensor materials have been exposed. The system includes software algorithms which cause the laser source and optical detector to move to a specified location or logical block address of the disk, measure the optical signal during disk rotation, display a map of the sensor material response, and reduce the noise level in the measured signal.
Owner:GENERAL ELECTRIC CO

Controllable synthesis method for polyaniline nano structure and use thereof

This invention relates to a controllable synthesized method of new style polyaniline self-assembly nanostructure. The method is that poly reaction is happened at 100~2500C in autoclave, dopant is protonic acid of oxidative polymerization reaction, then polyaniline flake structure is got and order tactic polyaniline nanometer bar (fiber) array on its surface. The structure has great photism. The array can be used to electromagnetic wave shield materials, antistatic materials, big content capacitor material, triode, sensor material, gas separation material and high efficiency photism.
Owner:NANJING UNIV

Imaging detector

The unvention discloses an imaging detector. A hybrid imaging detector is for detecting ionizing radiation such as X-rays or electron radiation. The detector has a sensor (10) on a read-out chip (20).The sensor (10) includes a plurality of sensor material layers (12, 14) of different materials stacked on top of one another, having differing radiation absorbing properties. The materials may be Siand SiGe, Si and Ge, or Si and amorphous Se, for example. The read-out chip is a photon-counting read-out chip that records a single count when a pulse above a threshold is detected.
Owner:PANALYTICAL BV

Systems and devices for sensing corrosion and deposition for oil and gas applications

Sensing systems include a tube defining a Fabry-Perot cavity and an optical fiber including a distal end disposed within the Fabry-Perot cavity and a proximal end. A corrodible material caps the Fabry-Perot cavity. Devices for sensing corrosion of downhole equipment include an optical fiber with a corrodible material disposed over a distal end of the optical fiber. Systems for sensing a condition in equipment include an optical fiber with a fiber Bragg grating proximate a distal end thereof and a mass of sensor material coupled to the distal end of the optical fiber. The mass of sensor material is suspended from above the fiber Bragg grating. Other systems for sensing a condition in a wellbore include an optical fiber and a plurality of fiber Bragg gratings along a length thereof. A plurality of sensor materials are coupled to the optical fiber and surround respective fiber Bragg gratings.
Owner:BAKER HUGHES INC

Polymer nano-composites as dry sensor material for biosignal sensing

A multifunctional polymer nano-composite sensor system for detecting various biosignals like ECG and other kinds of signals for sensing strain, temperature and moisture has been disclosed. This sensor system includes (1) a polymer nano-composite sensor material that is flexible, elastic, soft, and conductive, (2) a sensor material fabricated into a desired shape or form, and (3) a signal capturing interface for collecting, transmitting and processing the signals. This sensor system can easily be integrated into a user environment for various user-transparent sensing applications. The present invention more specifically reveals a multi-functional nano-composite sensor for detecting biologically generated electrical signals which is comprised of a polymeric composition having an electrically conductive wire embedded therein, wherein the polymeric composition has a dispersion phase and a dispersed phase, wherein the dispersion phase is comprised of a thermoplastic polymer or a thermoset polymer, wherein the dispersed phase includes an electrically conductive filler, wherein the polymeric composition is gel-free, and wherein the electrically conductive wire is adapted for conveying an electrical signal to a signal processing device. The present invention further discloses a polymeric composition which is comprised of a thermoplastic polyurethane, a styrenic polymer, and at least one electrically conductive filler wherein the styrenic polymer is present in the composition at a level which is within the range of 10 weight percent to 50 weight percent and wherein the electrically conductive filler is present at a level which is within the range of 0.5 weight percent to 40 weight percent, based on the total weight of the polymeric composition.
Owner:CLEVELAND MEDICAL POLYMERS

Method of fabrication for tape medium read head with unitary formation of multiple elements

A method is presented for fabrication of a tape medium read head having a unitary formation of multiple elements for reading multi-track data from a magnetic tape. The method includes providing a continuous substrate layer, and forming a sensor material layer on the continuous substrate layer. Photoresist material is deposited on the sensor material layer, and is patterned to form masks which provide protected areas and exposed areas of the sensor material layer. Exposed areas of the sensor material layer are shaped to form sensors from the protected areas of the sensor material layer. Electrical lead materials are deposited between and adjacent to the sensors, and the masks are removed.
Owner:WESTERN DIGITAL TECH INC

Sensor elements for detecting an analyte in a body fluid sample as well as methods of making the same

Sensor elements are provided for determining at least one analyte concentration in a body fluid. The sensor elements are at least partially implantable into a body tissue and have a substrate and at least two electrodes. One electrode is a working electrode having at least one conductive pad applied to the substrate and at least one electrically conductive sensor material is applied to the conductive pad that includes at least one detector substance adapted to perform an electrically detectable electrochemical detection reaction with the analyte. Another electrode is a counter electrode having at least one counter electrode conductive pad applied to the substrate. The sensor elements also include at least one electrically insulating material that surrounds at least the counter electrode on all sides, where a height of the electrically insulating material at least equals a height of the counter electrode conductive pad.
Owner:ROCHE DIABETES CARE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products