Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

163 results about "Ion beam deposition" patented technology

Ion beam deposition (IBD) is a process of applying materials to a target through the application of an ion beam. An ion beam deposition apparatus typically consists of an ion source, ion optics and the deposition target. Optionally a mass analyzer can be incorporated.

Method for preparing multi-metal element doped diamond film

The invention discloses a method for preparing a multi-metal element doped diamond film, which is characterized by comprising the following steps: removing a pollution layer on matrix surface by using the ultrasonic cleaning technology, carrying out ion beam bombardment cleaning on the matrix surface by using inert gas ion beam produced by an ion source, carrying out metal ion bombardment cleaning on the matrix surface by using metal ions produced by a cathodic arc source under a condition of high workpiece negative bias, preparing a gradient transition layer by using a cathodic arc deposition or ion beam assisted magnetron sputtering (IBAMS), and synthesizing a multi-metal element doped DLC film on the transition layer by using ion beam deposition and mosaic composite target magnetron sputtering, wherein the ion beam deposition is realized by introducing carbon gas in the ion source; and the mosaic composite target doped multiple metal are used, and the main body material of the mosaic composite target can be any one of Ti, Cr, W, Zr, Nb and Ta, and the mosaic block material is one or more of other metals except the above main body materials.
Owner:CHINA UNIV OF GEOSCIENCES (BEIJING)

Interface control for film deposition by gas-cluster ion-beam processing

Methods are disclosed for gas-cluster ion-beam deposition of thin films on silicon wafers rendered free of native oxides by termination of the surface bonds and subsequent reactive deposition. Hydrogen termination of the surface of silicon renders it inert to reoxidation from oxygen-containing environmental gasses, even those found as residue in vacuum systems, such as those used to deposit films. Nitrogen termination improves the interface with overlying metal-oxide thin films. The film is formed in intimate contact with the silicon crystal surface forming a nearly ideal interface.
Owner:JDSU OPTICAL

Hydroxylapatite coating magnesium alloy medical inner implantation material and method of preparing the same

InactiveCN101254314ADegradation rate mitigationControl degradation rateProsthesisMetallurgyApatite
The invention relates to a hydroxyapatite coating magnesium alloy medical implantation material and a preparation method thereof. The hydroxyapatite coating magnesium alloy medical implantation material is characterized in that: the surface of a magnesium alloy substrate is attached with a hydroxyapatite coating layer. The preparation method of the hydroxyapatite coating magnesium alloy medical implant material can adopt the bionic solution growing method, the ion beam deposition method, the coating and sintering process, the plasma spray method, the discharge plasma sintering method or the electrophoresis deposition method. The magnesium alloy material with the hydroxyapatite coating structure which is provided by the invention can effectively slow down the degradation rate of the magnesium alloy; at the same time, the coating layer can not only have great tissue compatibility, but can also be conductive to connective tissue attachment and the growth of the bone tissues, improve the bone healing rate and shorten the healing time.
Owner:BEIJING ALLGENS MEDICAL SCI & TECH +1

Ion beam process for deposition of highly abrasion-resistant coatings

An ion beam deposition method is provided for manufacturing a coated substrate with improved abrasion resistance, and improved lifetime. According to the method, the substrate is first chemically cleaned to remove contaminants. In the second step, the substrate is inserted into a vacuum chamber, and the air in said chamber is evacuated. In the third step, the substrate surface is bombarded with energetic ions to assist in the removal of residual hydrocarbons and surface oxides, and to activate the surface. <DEL-S DATE="20010724" ID="DEL-S-00001">Alter<DEL-E ID="DEL-S-00001"> <INS-S DATE="20010724" ID="INS-S-00001">After <INS-E ID="INS-S-00001">the substrate surface has been sputter-etched, a protective, abrasion-resistant coating is deposited by ion beam deposition. The ion beam-deposited coating may contain one or more layers. Once the chosen thickness of the coating has been achieved, the deposition process on the substrates is terminated, the vacuum chamber pressure is increased to atmospheric pressure, and the coated substrate products having improved abrasion-resistance are removed from the vacuum chamber. The coated products of this invention have utility as plastic sunglass lenses, ophthalmic lenses, bar codes scanner windows, and industrial wear parts that must be protected from scratches and abrasion.
Owner:MORGAN ADVANCED CERAMICS

Ion-beam deposition process for manufacture of binary photomask blanks

An ion-beam film deposition process is described for fabricating binary photomask blanks for selected lithographic wavelengths <400 nm, the said film essentially consisting of the MO<subscript>x< / highlight>C<subscript>y< / highlight>N<subscript>z < / highlight>compound where M is selected from chromium, molybdenum, tungsten, or tantalum or combination thereof in a single layer or a multiple layer configuration.
Owner:EI DU PONT DE NEMOURS & CO

Method for preparing transverse phase transition memory by using single-walled carbon nanotube as electrode

The invention provides a method for preparing a transverse phase transition memory by using a single-walled carbon nanotube as an electrode. The method comprises the following steps: first, cleaning a semi-conductor substrate to remove stains on the surface of the substrate; depositing a medium layer on the substrate surface by a chemical vapor deposition method; preparing a transverse single walled carbon nanotube array on the medium layer by the chemical vapor deposition method; depositing a plurality of mask targets for photoetching and contact electrodes contacted with each carbon nanotube; etching the carbon nanotube by electron beam lithography and reactive ion etching to form an electrode couple array; depositing a phase transition material on the etched carbon nanotube between electrode couples by a magnetron sputtering method and electronic photetching technology; depositing an adiathermal protecting region on a structure with the deposited phase transition material by an ion beam deposition method and electron beam lithography; and preparing each test electrode, thereby forming the transverse phase transition memory with low power consumption.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

Device for detecting ion beam section density distribution and uniform ion beam distribution in real time

The invention discloses an array composite Faraday cup capable of detecting beam spot section density distribution of ion beam current under a focusing condition and uniform beam distribution under a scanning condition. The array composite Faraday cup comprises a two-dimensional Faraday cup array (2) and two one-dimensional Faraday cup arrays (4), wherein the two-dimensional Faraday cup array (2) is positioned at the center, and the one-dimensional Faraday cup arrays (4) are positioned on two sides respectively. The array composite Faraday cup is characterized in that the two-dimensional Faraday cup array (2) at the center is used for detecting beam spot section density distribution of ion beams under the focusing condition (5), and the one-dimensional Faraday cup arrays (4) on the two sides are used for detecting uniform beam distribution of the ion beams under the scanning condition (6). By the aid of the array composite Faraday cup, distribution and state change of the ion beams can be detected in real time, and detection instantaneity and accuracy can be improved.
Owner:BEIJING SHUOKE ZHONGKEXIN ELECTRONICS EQUIP CO LTD

Method of measuring ion beam position

A system, apparatus, and method for determining position and two angles of incidence of an ion beam to a surface of a workpiece is provided. A measurement apparatus having an elongate first and second sensor is coupled to a translation mechanism, wherein the first sensor extends in a first direction perpendicular to the translation, and wherein the second sensor extends at an oblique angle to the first sensor. The first and second elongate sensors sense one or more characteristics of the ion beam as the first and second sensors pass through the ion beam at a respective first time and a second time, and a controller is operable to determine a position and first and second angle of incidence of the ion beam, based, at least in part, on the one or more characteristics of the ion beam sensed by the first sensor and second sensor at the first and second times.
Owner:AXCELIS TECHNOLOGIES

Three-dimensional semiconductor memory device based on deep hole filling and preparation method thereof

The invention discloses a three-dimensional semiconductor memory device based on deep hole filling and a preparation method of the three-dimensional semiconductor memory device. The preparation method is suitable for preparing a U-shaped channel of the three-dimensional semiconductor memory device. The double-ion-beam deposition technology is adopted, a target material is bombarded with one beam of ions, molecules of the target material overflow and are deposited in a deep hole along a trail, the surface of the deep hole is bombarded with the other beam of ions, the deposited material can not cover the top of the deep hole, and therefore it is guaranteed that the U-shaped channel of the three-dimensional semiconductor memory device is completely formed. Electrodes of the three-dimensional semiconductor memory device with the U-shaped channel are led out from the upper side of the device, so that the electrode contact area is reduced; meanwhile, an NAND string of the U-shaped three-dimensional semiconductor memory device can comprise a stacking structure formed by alternately stacking at least one layer of semiconductors and an insulation layer, the number of devices in the unit area is increased, and therefore the memory density of the three-dimensional semiconductor memory device with the U-shaped channel can be greatly increased.
Owner:HUAZHONG UNIV OF SCI & TECH

Method for preferentially growing metallic single-walled carbon nanotube by using non-metallic silicon oxide as catalyst

The invention relates to the field of direct controllable preparation of metallic single-walled carbon nanotubes, and particularly discloses a method for preferentially growing a metallic single-walled carbon nanotube by using non-metallic silicon oxide as a catalyst. A silicon oxide film is deposited on a silicon substrate with nano silicon oxide thermal oxidization layer by an Ar ion beam deposition method, nucleation and precipitation of nano particles are realized by control on pretreatment conditions, and regulation on particle size and distribution is also realized, finally, the metallic single-walled carbon nanotube with the diameter about 1.2nm is obtained under proper growth conditions, and the content of the metallic single-walled carbon nanotube is more than 80% of the amount of the single-walled carbon nanotubes. In the method provided by the invention, starting from controlling the catalyst on which the single-walled carbon nanotube depends in the nucleation phase, based on the property of high melting point of the non-metallic catalyst, the direct growth of the single-walled carbon nanotube with narrower diameter distribution is realized, the bottleneck of metallic single-walled carbon nanotube control preparation in the present stage is broken, and new knowledge is provided for the nucleation mechanism of the single-walled carbon nanotube with special structure.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Focused anode layer ion source device

The invention discloses a focused anode layer ion source device, which comprises a shell, wherein an anode ring and a cathode ring are oppositely arranged in the shell at an interval; an intake pipe is also fixedly arranged on the shell; the surfaces of the anode ring and the cathode ring are circular conical surfaces; the cathode ring comprises an outer cathode ring and an inner cathode ring; the outer cathode ring and the inner cathode ring are arranged in the same circular conical surface; and the conical surface of the anode ring is parallel to that of the cathode ring. The focused anode layer ion source device is scientific and reasonable in structure design; the anode ring and the cathode ring are set to be parallel circular conical surfaces, generated ion beams are focused towards the axis direction and the ion beams of which the sections are solid circles are formed within a distance range far away from the focusing point; the ion beam density is concentrated and the section uniformity is good; through a design of multiple groups of water-cooling systems, the cooling effect on a magnetic path and the inner cathode ring is ensured; the service life of the inner cathode ring can be prolonged; and the continuous high-intensity working time of the ion source is prolonged and the reliability of the ion source is strengthened.
Owner:LANZHOU INST OF PHYSICS CHINESE ACADEMY OF SPACE TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products