Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

170results about How to "Small spot size" patented technology

Apparatus and methods for additive-layer manufacturing of an article

Apparatus is for additive layer manufacturing of an article from a material which can be rendered solid locally by application of a focused beam of laser radiation at a planar focal plane. The apparatus includes at least two laser beams, respective scanners for each laser beam for scanning the respective laser beams over a planar field, and a support movable stepwise to allow successive manufacturing layer cycles and for supporting material within the field. The entire planar field is common to each scanner and at least one scanner is tilted with respect to the planar field, and the at least one scanner is provided with a lens arranged to generate a focal plane tilted with respect to that scanner.
Owner:SIEMENS ENERGY GLOBAL GMBH & CO KG

Ultraviolet laser ablative patterning of microstructures in semiconductors

Patterns with feature sizes of less than 50 microns are rapidly formed directly in semiconductors, particularly silicon, GaAs, indium phosphide, or single crystalline sapphire, using ultraviolet laser ablation. These patterns include very high aspect ratio cylindrical through-hole openings for integrated circuit connections; singulation of processed die contained on semiconductor wafers; and microtab cutting to separate microcircuit workpieces from a parent semiconductor wafer. Laser output pulses (32) from a diode-pumped, Q-switched frequency-tripled Nd:YAG, Nd:YVO4, or Nd:YLF is directed to the workpiece (12) with high speed precision using a compound beam positioner. The optical system produces a Gaussian spot size, or top hat beam profile, of about 10 microns. The pulse energy used for high-speed ablative processing of semiconductors using this focused spot size is greater than 200 μJ per pulse at pulse repetition frequencies greater than 5 kHz and preferably above 15 kHz. The laser pulsewidth measured at the full width half-maximum points is preferably less than 80 ns.
Owner:BAIRD BRIAN W +5

Scanning system for inspecting anamolies on surfaces

An optical scanning system and method for detecting anomalies, including pattern defects and particulate contaminants, on both patterned and unpatterned surfaces, using a light beam, scanning at a grazing angle with respect to the surfaces, a plurality of detectors and an interchannel communication scheme to compare data from each detector, which facilitates characterizing anomalies. The light beam illuminates a spot on the surface which is scanned over a short scan-line. The surface is moved in a manner so that the spot is scanned over its entire area in a serpentine fashion along adjacent striped regions. The plurality of detectors include groups of collector channels disposed circumferentially around the surface, a bright field reflectivity / autoposition channel, an alignment / registration channel and an imaging channel. The collector channels in each group are symmetrically disposed, in the azimuth, on opposite sides of the center of the scan line. The position of the collector channels, as well as the polarization of the beam, facilitates distinguishing pattern defects from particulate contaminants. The bright field reflectivity / autoposition channel is positioned to receive specularly reflected light that carries information concerning local variation in reflectivity, which is used to classify detected anomalies, as well as determine variations in the height of the surface. The alignment / registration channel is positioned to detect a maximum of the light scattered from the pattern on the surface to ensure that the streets of die present on the surface are oriented so as not to be oblique with respect to the scan line. The imaging channel combines the advantages of a scanning system and an imaging system while improving signal / background ratio of the present system.
Owner:NIKOONAHAD MEHRDAD +3

Scatterometry to simultaneously measure critical dimensions and film properties

ActiveUS20050041250A1Spot be very smallAccurately analyzedPolarisation-affecting propertiesUsing optical meansPolarizerAngle of incidence
An ellipsometer includes a light source for generating a probe beam of polychromatic light for interacting with a sample. A polarizer is used to impart a known polarization state to the probe beam and the polarized probe beam is directed against the sample at a shallow angle of incidence. A rotating compensator is used to impart phase retardations to the polarization state of the reflected probe beam. After passing through the compensator, the probe beam passes through a second polarizer (analyzer). After leaving the analyzer, the probe beam is received by a detector. The detector translates the received probe beam into a signal that includes DC, 2ω and 4ω signal components (where ω is the angular velocity of the rotating compensator). A processor analyzes the signal using the DC, 2ω and 4ω components allowing simultaneous evaluation of both critical dimensions and film parameters.
Owner:THERMA WAVE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products