Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2427 results about "Magnetic shield" patented technology

Method and apparatus for shielding a linear accelerator and a magnetic resonance imaging device from each other

A radiation therapy system comprises a magnetic resonance imaging (MRI) system combined with an irradiation system, which can include one or more linear accelerators (linacs) that can emit respective radiation beams suitable for radiation therapy. The MRI system includes a split magnet system, comprising first and second main magnets separated by gap. A gantry is positioned in the gap between the main MRI magnets and supports the linac(s) of the irradiation system. The gantry is rotatable independently of the MRI system and can angularly reposition the linac(s). Shielding can also be provided in the form of magnetic and / or RF shielding. Magnetic shielding can be provided for shielding the linac(s) from the magnetic field generated by the MRI magnets. RF shielding can be provided for shielding the MRI system from RF radiation from the linac.
Owner:VIEWRAY TECH

Implantable shielded medical device

An implantable device that contains a power source, a device for producing electrical signals, and a conductor assembly for communicating the electrical signals to biological matter. The conductor assembly contains of a conductor that is capable of being flexed at least about 15 degrees and that has a resistivity at 20 degrees Centigrade of from about 1 to about 100 micro ohm-centimeters. The conductor assembly also contains a magnetic shield located above the flexible conductor; the magnetic shield contains an antithrombogenic composition. The magnetic shield also contains a magnetic shielding material that has a magnetic shielding factor of at least about 0.5.
Owner:BIOPHAN TECH

Magnetically shielded electrodeless light source

A dimmable electrodeless light source includes an electrodeless lamp, an electronic ballast and a dimming module. The light source further includes coupling transformers coupled to the electrodeless lamp for inductively coupling power to the lamp to generate light. An auxiliary winding electromagnetically coupled to the primary winding of at least one of the coupling transformers is driven by switching circuitry in the dimming module. The switching circuitry is pulse width modulated to control the average brightness of the light generated by the electrodeless lamp. An exemplary application for the dimmable electrodeless light source is as a backlight for a video display device, such as a liquid crystal display unit. The dimmable electrodeless light source further includes a magnetic shield device that is operably positioned with respect to the electrodeless lamp. The magnetic shield device produces a magnetic field that substantially opposes, and cancels, the magnetic field that is produced by the electrodeless lamp when energized. In an alternative embodiment, the magnetic shield device produces a magnetic field which, when combined with the lamp magnetic field, results in a total magnetic field that is substantially constant regardless of the energization level of the lamp (e.g., totally energized or dimmed). The magnetic shield thus reduces visual artifacts that might otherwise appear on a video display unit due to a variation of the magnetic field produced by the lamp.
Owner:L 3 COMM CORP

Magnetic sensor with perpendicular anisotrophy free layer and side shields

A tunneling magneto-resistive reader includes a sensor stack separating a top magnetic shield from a bottom magnetic shield. The sensor stack includes a reference magnetic element having a reference magnetization orientation direction and a free magnetic element having a free magnetization orientation direction substantially perpendicular to the reference magnetization orientation direction. A non-magnetic spacer layer separates the reference magnetic element from the free magnetic element. A first side magnetic shield and a second side magnetic shield is disposed between the top magnetic shield from a bottom magnetic shield, and the sensor stack is between the first side magnetic shield and the second side magnetic shield. The first side magnetic shield and the second side magnetic shield electrically insulates the top magnetic shield from a bottom magnetic shield.
Owner:SEAGATE TECH LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products