Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1810 results about "Beam shaping" patented technology

Bicone pattern shaping device

A broadband omni-directional bicone antenna. The antenna can comprise conductive surfaces of conical voids provided within a solid dielectric structure. The outside surface of the solid structure can support a radio frequency (RF) lens geometry operable for beam forming. The beam forming can modify the elevation pattern of the electromagnetic radiation from the bicone antenna. The solid dielectric structure may be machined or molded from a single piece of material. The conical voids provided within the solid structure can be metallized to provide conductive bicone radiators. The outer surface beam shaping lenses can be zoned or continuous and can provide elevation patterns with increased gain, cosecant squared falloff, or various other patterns. The beam shaping lens may be formed from any low-loss dielectric. Alternatively, the lens may be formed from a less dense material such as dielectric foam that can support radial conductive beam forming vanes.
Owner:EMS TECHNOLOGIES

Dielectric-resonator array antenna system

A dielectric resonator element array (DRA) antenna system and method for using same is disclosed. The dielectric resonator antenna system includes a ground plain, a feed structure, an array of dielectric resonator elements electrically coupled to the feed structure, each dielectric element having a relatively high permittivity, a radome close to or in contact with the array of dielectric resonator elements, an object mounting apparatus for mounting the antenna system on an object, and a beam shaping and steering controller, the beam shaping and steering controller controlling the feed structure to thereby control excitation phases of the dielectric resonator elements.
Owner:STRICKLAND PETER C

Laser Illuminator System

An optical illuminator using Vertical Cavity Surface Emitting Laser (VCSEL) is disclosed. Optical modules configured using single VCSEL and VCSEL arrays bonded to a thermal submount to conduct heat away from the VCSEL array, are suited for high power and high speed operation. High speed optical modules are configured using single VCSEL or VCSEL arrays connected to a high speed electronic module on a common thermal submount or on a common Printed Circuit Board (PCB) platform including transmission lines. The electronic module provides low inductance current drive and control functions to operate the VCSEL and VCSEL array. VCSEL apertures are designed for a desired beam shape. Additional beam shaping elements are provided for VCSELs or VCSEL arrays, for desired output beam shapes and / or emission patterns. VCSEL arrays may be operated in continuous wave (CW) or pulse operation modes in a programmable fashion using a built-in or an external controller.
Owner:PRINCETON OPTRONICS

Miniature Optical Elements for Fiber-Optic Beam Shaping

In part, the invention relates to optical caps having at least one lensed surface configured to redirect and focus light outside of the cap. The cap is placed over an optical fiber. Optical radiation travels through the fiber and interacts with the optical surface or optical surfaces of the cap, resulting in a beam that is either focused at a distance outside of the cap or substantially collimated. The optical elements such as the elongate caps described herein can be used with various data collection modalities such optical coherence tomography. In part, the invention relates to a lens assembly that includes a micro-lens; a beam director in optical communication with the micro-lens; and a substantially transparent film or cover. The substantially transparent film is capable of bi-directionally transmitting light, and generating a controlled amount of backscatter. The film can surround a portion of the beam director.
Owner:LIGHTLAB IMAGING

Wound healing monitoring and treatment

InactiveUS20060241495A1Facilitate quality imagingDiagnostics using lightSensorsDetector arrayOptical polarization
A polarization based diagnostic device (200) for optically examining the medical condition of tissue (290) comprises an illumination optical system (205), comprising a light source (220) and beam shaping optics. An optical detection system (210) comprises imaging optics and an optical detector array, which detects light from the tissue. Polarizing optics provided in both the illumination optical system and the optical detection system are crossed and pass orthogonal polarization states. Iterative rotational means rotate the orthogonal polarization states relative to the tissue being examined. Image enhancement means includes image processing, sequential multi-spectral illumination and imaging, and image focus control to facilitate quality imaging at varying depths within the tissue. A controller (215) operates the light source, the detector array, the multi-spectral illumination and imaging, image focus control, and image processing.
Owner:CARESTREAM HEALTH INC

Tissue imaging system

A tissue imaging system (200) for examining the medical condition of tissue (290) has an illumination optical system (205), which comprises a light source (220), having one or more light emitters, beam shaping optics, and polarizing optics. An optical beamsplitter (260) directs illumination light to an imaging sub-system, containing a spatial light modulator array (300). An objective lens (325) images illumination light from the spatial light modulator array to the tissue. An optical detection system (210) images the spatial light modulator to an optical detector array. A controller (360) drives the spatial light modulator to provide time variable arrangements of on-state pixels. The objective lens operates in a nominally telecentric manner relative to both the spatial light modulator and the tissue. The polarizing optics are independently and iteratively rotated to define variable polarization states relative to the tissue. The modulator pixels optically function like pinholes relative to the illumination light and the image light.
Owner:CARESTREAM DENTAL TECH TOPCO LTD

Micro-projector

The present invention provides a projection display comprising an illumination system comprising at least one laser source unit and configured and operable for producing one or more light beams; a spatial light modulating (SLM) system accommodated at output of the illumination system and comprising one or more SLM units for modulating light incident thereon in accordance with image data; and a light projection optics for imaging modulated light onto a projection surface. The illumination system comprises at least one beam shaping unit comprising a Dual Micro-lens Array (DMLA) arrangement formed by front and rear micro-lens arrays (MLA) located in front and rear parallel planes spaced-apart along an optical path of light propagating towards the SLM unit, the DMLA arrangement being configured such that each lenslet of the DMLA directs light incident thereon onto the entire active surface of the SLM unit, each lenslet having a geometrical aspect ratio corresponding to an aspect ratio of said active surface of the SLM unit.
Owner:EXPLAY

LED light source with field-of-view-controlling optics

Pixels for a large video display which employs solid-state emitters, such as colored light emitting diodes, as light source are formed by outfitting each colored solid state emitter within the pixel with an individually tailored miniature intensity-enhancing optical system. Each of these miniature optical systems comprises a set of four wide field-of-view Lambertian reflectors 34, a pair of narrow field-of-view Lambertian reflectors 36, and a beam-shaping lens 38. The miniature intensity-enhancing optical system can be specifically designed to restrict emission in the vertical field-of-view, while providing a Lambertian intensity dependence throughout an unrestricted horizontal view. For example, the field-of-view in the vertical direction may be limited to about .+-.30.degree. while the field-of-view is about .+-.90.degree. in the horizontal direction.
Owner:TELEDYNE LIGHTING & DISPLAY PRODS

Implementation and experimental results of real-time 4d tumor tracking using multi-leaf collimator (MLC), and/or mlc-carriage (mlc-bank), and/or treatment table (COUCH)

Methods and systems of operating a support structure and beam shaping mechanism in a manner that compensates for motion patterns exhibited by a patient, promotes comfort of the patient, and optimizes accuracy of delivery of radiotherapy to a targeted location within the patient. The support structure can be a treatment table or couch and the beam shaping mechanism can be a multi-leaf collimator (MLC), and / or an MLC-bank / -carriage. The control system can utilize algorithms for predicting tumor motion and loading condition on the table / couch during radiation therapy.
Owner:ELEKTA AB +1

Optical System and Method for Use in Projection Systems

An optical system and method are presented to produce a desired illuminating light pattern. The system comprises a light source system configured and operable to produce structured light in the form of a plurality of spatially separated light beams; and a beam shaping arrangement. The beam shaping arrangement is configured as a diffractive optical unit configured and operable to carry out at least one of the following: (i) combining an array of the spatially separated light beams into a single light beam thereby significantly increasing intensity of the illuminating light; (ii) affecting intensity profile of the light beam to provide the illuminating light of a substantially rectangular uniform intensity profile.
Owner:EXPLAY

Apparatus and method of improving beam shaping and beam homogenization

The present invention generally relates to an optical system that is able to reliably deliver a uniform amount of energy across an anneal region contained on a surface of a substrate. The optical system is adapted to deliver, or project, a uniform amount of energy having a desired two-dimensional shape on a desired region on the surface of the substrate. Typically, the anneal regions may be square or rectangular in shape. Generally, the optical system and methods of the present invention are used to preferentially anneal one or more regions found within the anneal regions by delivering enough energy to cause the one or more regions to re-melt and solidify.
Owner:APPLIED MATERIALS INC

LED lens for backlight

Disclosed herein is a Light Emitting Diode (LED) lens for a backlight. The LED lens includes an LED light source, a lens body, and a beam shaping element. The lens body is configured such that the LED light source is accommodated in the lower portion thereof, and light emitted from the LED light source is radiated in vertical and lateral directions of the lens body. The beam shaping element is fastened to the top of the lens body and is configured to adjust light beams radiated through the upper surface of the lens body. Accordingly, the uniformity of luminance and color can be increased and, at the same time, the overall performance of the system can be improved.
Owner:SAMSUNG ELECTRONICS CO LTD

Random microlens array for optical beam shaping and homogenization

Microlens arrays are defined with microlens elements that differ from each other in accordance with a probability distribution for shaping an optical beam having a prescribed intensity profile within a desired far-field scatter pattern. The differences include random variations in a sag profile corresponding to a surface shape of the microlenses, a boundary profile corresponding to a boundary of the microlenses, and a spatial distribution corresponding to the relative position of the microlenses within the array. The sag profile variations can be used to homogenize an intensity profile of the optical beam. The boundary profile variations within an irregular spatial distribution can be used to apply the prescribed intensity profile of the optical beam within the desired scatter pattern.
Owner:CORNING INC

Multiple Pixel Scanning LIDAR

Methods and systems for performing three dimensional LIDAR measurements with multiple illumination beams scanned over a three dimensional environment are described herein. In one aspect, illumination light from each LIDAR measurement channel is emitted to the surrounding environment in a different direction by a beam scanning device. The beam scanning device also directs each amount of return measurement light onto a corresponding photodetector. In some embodiments, a beam scanning device includes a scanning mirror rotated in an oscillatory manner about an axis of rotation by an actuator in accordance with command signals generated by a master controller. In some embodiments, the light source and photodetector associated with each LIDAR measurement channel are moved in two dimensions relative to beam shaping optics employed to collimate light emitted from the light source. The relative motion causes the illumination beams to sweep over a range of the three dimensional environment under measurement.
Owner:VELODYNE LIDAR USA INC

Three-dimensional ladar module with alignment reference insert circuitry

ActiveUS7436494B1Minimize layer-to-layerMinimize channel-to-channel “ jitter ”Optical rangefindersElectromagnetic wave reradiationShift registerSignal processing circuits
A 3-D LADAR imaging system incorporating stacked microelectronic layers is provided. A light source such as a laser is imaged upon a target through beam shaping optics. Photons reflected from the target are collected and imaged upon a detector array though collection optics. The detector array signals are fed into a multilayer processing module wherein each layer includes detector signal processing circuitry. The detector array signals are amplified, compared to a user-defined threshold, digitized and fed into a high speed FIFO shift register range bin. Dependant on the value of the digit contained in the bins in the register, and the digit's bin location, the time of a photon reflection from a target surface can be determined. A T0 trigger signal defines the reflection time represented at each bin location by resetting appropriate circuitry to begin processing.A reference insert circuit inserts data into the FIFO registers at a preselected location to provide a reference point at which all FIFO shift register data may be aligned to accommodate for timing differences between layers and channels. The bin data representing the photon reflections from the various target surfaces are read out of the FIFO and processed using appropriate circuitry such as a field programmable gate array to create a synchronized 3-D point cloud for creating a 3-D target image.
Owner:NYTELL SOFTWARE LLC

Techniques for beam shaping at a millimeter wave base station and a wireless device and fast antenna subarray selection at a wireless device

Methods, systems, and devices are described for wireless communication at a user equipment (UE). A wireless communications system may improve UE discovery latency by dynamically selecting and switching beam forming codebooks at the millimeter wave base station and the wireless device. Selecting an optimal beam forming codebook may allow the wireless communication system to improve link margins between the base station without compromising resources. In some examples, a wireless device may determine whether the received signals from the millimeter wave base station satisfy established signal to noise (SNR) thresholds, and select an optimal beam codebook to establish communication. Additionally or alternately, the wireless device may further signal the selected beam codebook to the millimeter wave base station and direct the millimeter wave base station to adjust its codebook based on the selection.
Owner:QUALCOMM INC

Wave beam recognition method, related device and system for MIMO beam forming communication system

Disclosed is a beam identification method in a MIMO beam forming communications system. The method comprises: a base station sending multiple beam training signals to a terminal, each beam training signal corresponding to one beam, and each beam covering a different direction; the terminal detecting the beam training signals, determining a selected beam according to a result of the detection, and feeding back information indicating the selected beam to the base station; the base station determining, according to the information indicating the selected beam fed back by the terminal, a beam used for sending data information. Also disclosed are a related beam identification device and system in a MIMO beam shaping communications system.
Owner:ZTE CORP

Optical system and method for use in projection systems

An optical system and method are presented to produce a desired illuminating light pattern. The system comprises a light source system configured and operable to produce structured light in the form of a plurality of spatially separated light beams; and a beam shaping arrangement. The beam shaping arrangement is configured as a diffractive optical unit configured and operable to carry out at least one of the following: (i) combining an array of the spatially separated light beams into a single light beam thereby significantly increasing intensity of the illuminating light; (ii) affecting intensity profile of the light beam to provide the illuminating light of a substantially rectangular uniform intensity profile.
Owner:EXPLAY

Side firing fiber optic array probe

A multi fiber optic medical probe comprises at least two optical fibers. There are side-firing terminations for the at least two optical fibers. Further, beam-shaping apertures are provided for controlling light propagating between the side-firing terminations and a region lateral to the probe. The provision of the at least two optical fibers allows for multiple optical signals to be transmitted to and / or from the target area within the patient. The side-firing terminations allow for the interrogation of regions that are adjacent to the probe, i.e., extending in a direction parallel to the insertion direction or longitudinal axis of the probe. The beam shaping apertures are provided for controlling light propagating between the side-firing terminations and the region lateral to the probe, in order to control the shape of the emitted beam and also, the direction from which light is collected.
Owner:INFRAREDX INC

Miniature optical elements for fiber-optic beam shaping

In part, the invention relates to optical caps having at least one lensed surface configured to redirect and focus light outside of the cap. The cap is placed over an optical fiber. Optical radiation travels through the fiber and interacts with the optical surface or optical surfaces of the cap, resulting in a beam that is either focused at a distance outside of the cap or substantially collimated. The optical elements such as the elongate caps described herein can be used with various data collection modalities such optical coherence tomography. In part, the invention relates to a lens assembly that includes a micro-lens; a beam director in optical communication with the micro-lens; and a substantially transparent film or cover. The substantially transparent film is capable of bi-directionally transmitting light, and generating a controlled amount of backscatter. The film can surround a portion of the beam director.
Owner:LIGHTLAB IMAGING

Led lens for backlight

Disclosed herein is a Light Emitting Diode (LED) lens for a backlight. The LED lens includes an LED light source, a lens body, and a beam shaping element. The lens body is configured such that the LED light source is accommodated in the lower portion thereof, and light emitted from the LED light source is radiated in vertical and lateral directions of the lens body. The beam shaping element is fastened to the top of the lens body and is configured to adjust light beams radiated through the upper surface of the lens body. Accordingly, the uniformity of luminance and color can be increased and, at the same time, the overall performance of the system can be improved.
Owner:SAMSUNG ELECTRONICS CO LTD

Audio system having beam-shaping speakers and eyewear having such an audio system

The invention relates to an audio system (2) for disposing in the external region of an ear, having a carrier element (4) for affixing to the head of the user and comprising at least one hollow space (26, 27, 28) having a primary opening (11, 12, 13) oriented in the direction of an ear opening (22) of the intended ear when the carrier element (4) is disposed as intended, and having at least one speaker (5, 6, 7) disposed in the hollow space (26, 27, 28), the cavity (14, 15, 16) thereof being at least partially formed by a first hollow space region (29) and by means of which first sound waves (35) can be emitted through the primary opening (11, 12, 13) in the direction of the ear spaced apart from said opening. According to the invention, the hollow space (26, 27, 28) comprises a secondary opening (17, 18, 19) disposed in the first hollow space region (29) such that said opening is oriented away from the ear toward the surrounding area when the carrier element (4) is disposed as intended so that second sound waves (36) can be emitted through the secondary opening (17, 18, 19) by means of the speaker (5, 6, 7), said waves being offset in phase from the first sound waves (35) such that the volume of the sound waves emitted by the audio system (2) into the surrounding area can be reduced.
Owner:USOUND

Method and apparatus for controlling and adjusting the intensity profile of a laser beam employed in a laser welder for welding polymeric and metallic components

A method and apparatus is provided for forming a fusion bond between two materials such as two components of a catheter. The method begins by forming a bond site by positioning a portion of a first body with respect to a portion of a second body so that a fusion bond site is formed. A laser beam is generated that has an intensity profile across its width. The laser beam is directed onto at least a portion of the first and second bodies within the bond site so that a fusion zone having an increased temperature is formed. After the laser beam is generated, the intensity profile of the laser beam that is directed onto the bond site is controllably adjusted by an optical element such as a dynamically-adjustable beam shaping element
Owner:BOSTON SCI SCIMED INC

Multimode transmission system using TDMA

A multimode transmission system using TDMA provides a plurality of satellite services to a ground station terminal. These services include timing beacon synchronization, multi-cast / broadcast data service, calibration data, and point-to-point data service. The multimode transmission system uses a TDM switch to generate a TDMA signal having a plurality of TDMA transmission frames. Each TDMA transmission frame includes a plurality of downlink frame time slots. Each time slot may be of variable length and is dynamically allocated to an individual satellite service based upon demand. The TDMA signal is then broadcast using an advanced transmit antenna system, which requires beam-shaping and beam power control features, to enable TDMA switching between shaped beams and spot beam modes of the antenna. These antenna features allow for the dynamic partitioning of satellite system capacity between wide-area broadcasts and localized point-to-point service and efficient utilization of the satellite transmission power.
Owner:HUGHES ELECTRONICS

Rectangular flat-top beam shaper

The invention relates to a beam shaping system for providing a square or rectangular laser beam having a controlled intensity profile (uniform, super gaussian or cosine corrected for example) from an incident non-uniform beam intensity profile laser beam source (a Gaussian profile, a profile with astigmatism or any non-rotationally symmetric and non-uniform profile for example). The beam shaping system uses a first acylindrical lens for shaping the incident laser beam along a first axis and a second acylindrical lens orthogonally disposed relative to the first acylindrical lens and for shaping the incident beam along a second axis. The thereby provided light beam is a rectangular beam having a controlled intensity distribution in the far field.
Owner:COHERENT INC

Beam-shaping device

A beam shaping device (1; 31) comprising first (3; 33) and second (4; 37) optically transparent substrates, a liquid crystal layer (2; 36) sandwiched there between, and first (5; 34) and second (6; 35) electrodes arranged on a side of the liquid crystal layer (2; 36) facing the first substrate (3; 34). The beam shaping device (1; 31) is controllable between beam-shaping states, each permitting passage of light through the beam-shaping device in a direction perpendicular thereto. The beam shaping device (1; 31) is configured in such a way that application of a voltage (V) across the first (5; 34) and second (6; 35) electrodes results in an electric field having a portion essentially parallel to the liquid crystal layer (2; 36) in a segment thereof between neighboring portions of the electrodes (5, 6; 34; 35) and extending substantially from the first substrate (3; 34) to the second (4; 35) substrate. In this way a relatively high refractive index gradient can be obtained across short distances, which enables a very efficient beam shaping. The electric field can be achieved by utilizing electrodes provided on one side of the liquid crystal layer, in a so-called in-plane configuration. The device can be used in an autostereoscopic display device, for switching between 2D and 3D modes.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Method and apparatus for improved optical elements for vertical PCB fiber optic modules

Fiber optic transmitter and receiver electrical elements are implemented on separate vertical boards in fiber optic modules. An optical block implements lenses and reflecting surfaces to minimize manufacturing costs. The light receiver and light transmitter are mounted to receive and transmit non-orthogonal to the fiber axis to avoid optical cross talk. In one embodiment, receiver and transmitter are mounted at an angle greater than forty-five degrees with a perpendicular line to the reflective surfaces. In another embodiment, receiver and transmitter are mounted at an angle less than forty-five degrees with a perpendicular line to the reflective surfaces. The reflective surface for transmission may be a beam shaper to improve light beam uniformity and optical coupling and to avoid active alignment. The vertical boards have ground planes facing each other to minimize electrical cross talk. An optional shielded housing provides further shielding for reducing EMI.
Owner:LUMENTUM OPERATIONS LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products