Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

126results about "Thick film varistors" patented technology

Very low profile multilayer components

Methodologies are disclosed for producing multilayer electronic devices using a single screen printing mask. Plural layer devices are constructed by placing a common mask in alternating positions among alternating layers of support material such that, upon stacking of the plural layers, complimentary electrode structure is produced in alternating layers. Support material may be varied to produce different devices, including capacitors, resistors, and varistors. Multilayer electronic devices include multiple layers providing adjacent printed complimentary electrode layers having an upper surface, a lower surface, a front edge, and a back edge, and with lateral end portions of combined first and second layers trimmed so as to expose selected conductive patterns. Termination material is applied to at least such trimmed lateral end portions. A low inductance controlled equivalent series resistance (ESR) multilayer capacitor, includes at least two different pairs of electrodes, some of which have interdigitated respective side tabs. Termination material may be associated with such electrodes. In some instances, some electrodes may have dummy or anchor tabs associated with them but not electrically connected with them, to facilitate the formation of termination material at designated locations.
Owner:AVX CORP

Varistor and light emitting device

In a varistor, a heat radiating portion contains the same components as ZnO that is the main component of a varistor element body, as metal oxides, thereby, the structural components of the varistor element body and the heat radiating portion are caused to be common. During firing, Ag contained in the heat radiating portion diffuses into the grain boundaries of ZnO, near the interface between surfaces of the heat radiating portion and the varistor element body. Consequently, in the varistor, cracks hardly occur between the varistor portion and the heat radiating portion during firing (or during binder removal), thereby, ensuring sufficient bonding strength between the varistor portion and the heat radiating portion. Therefore, heat conducted to the varistor portion is radiated efficiently conducting through electrically conducted paths formed in the heat radiating portion from the surface facing the varistor element body to other three surfaces of the heat radiating portion.
Owner:TDK CORPARATION

Voltage non-linear resistance ceramic composition and voltage non-linear resistance element

As for the voltage non-linear resistance element layer 2, sintered body (ceramics) having ZnO as main component is used. Said sintered body comprises Pr, Co, Ca and Na are added. Therefore, the ranges are 0.05 to 5.0 atm % of Pr, 0.1 to 20 atm % of Co, 0.01 to 5.0 atm % of Ca and 0.0001 to 0.0008 atm % of Na. When it is within the range, the capacitance changing rate at 85° C. with standard being 25° C. can be made to equal or less than 10%.
Owner:TDK CORPARATION

Multilayer filter

An object of the present invention is to provide a multilayer filter constructed so as to be less likely to suffer peeling between a varistor part and an inductor part. A multilayer filter 10 as a preferred embodiment has a structure in which a varistor part 20 and an inductor part are stacked. The varistor part 30 consists of a stack of varistor layers 31, 32 with internal electrodes 31a, 32a, and the varistor layers contain ZnO as a principal component, and contain at least one element selected from the group consisting of Pr and Bi, Co, and Al as additives. The inductor part 20 consists of a stack of inductor layers 21-24 with conductor patterns 21a-24a, and the inductor layers contain ZnO as a principal component and substantially contain neither Co nor Al.
Owner:TDK CORPARATION

Multilayer chip varistor

A multilayer chip varistor comprises a multilayer body and a pair of external electrodes formed on the multilayer body. The multilayer body has a varistor section and a pair of outer layer sections disposed so as to interpose said varistor section. The varistor section comprises a varistor layer developing a voltage nonlinear characteristic and a pair of internal electrodes disposed so as to interpose the varistor layer. The pair of external electrodes are connected to respective electrodes of the pair of internal electrodes. The relative dielectric constant of the outer layer sections is set lower than the relative dielectric constant of the region where the pair of internal electrodes in the varistor layer overlap each other.
Owner:TDK CORPARATION

Surge absorbing element

A surge absorbing element has a first electrode, a second electrode, and a ceramic layer. The second electrode is opposed to the first electrode. The ceramic layer has a polycrystal structure including a plurality of crystal grains showing voltage nonlinearity, and is at least partially brought into contact with the first electrode and the second electrode. The ceramic layer has a void inside therein, and surface discharge is generated on surfaces, exposed to the void, of the crystal grains, whereby electric conduction is attained between the first and second electrodes.
Owner:PANASONIC CORP

Method of manufacturing ESD protection component

The present invention relates to a method of manufacturing an ESD protection component, where the method includes at least a step of producing slurry including varistor particles and a resin binder; a step of producing a varistor green sheet from this slurry; a step of forming a conductor layer; a step of forming an adhesive layer on a ceramic substrate; a step of sticking a varistor green sheet on an adhesive layer; and a step of baking, providing a high-performance and uniform ESD protection component.
Owner:PANASONIC CORP

Ceramic component and method for producing a ceramic component

A ceramic component (100) comprises a basic body (101) with two connecting contacts (102, 103) fitted thereon. The component (100) has a first longitudinally extended via electrode (104) and a second longitudinally extended via electrode (105), said electrodes each being coupled to one of the connecting contacts (102, 103). The first via electrode (104) and the second via electrode (105) each have an extended area (106, 107) in projection in the longitudinal direction. For production purposes, a plurality of ceramic layers (117, 118, 119) is layered to form a layer stack, which forms the basic body (101), and the two via electrodes (104, 105) are introduced into the layer stack transversely to the layer sequence.
Owner:EPCOS AG

Composition for filling discharge gap and electrostatic discharge protection member

Disclosed is an electrostatic discharge protection member which can be formed in an arbitrary shape and conveniently used for solving ESD problems in electronic circuit boards of various designs, shows excellent properties of highly accurately controlling working voltage, and enables downsizing and cost reduction. Also disclosed is a composition for filling a discharge gap which can be used in producing the aforesaid electrostatic discharge protection member. A composition for filling a discharge gap characterized by comprising a metal grain having an oxide coating (A), a stratiform substance (B) and a binder component (C); and an electrostatic discharge protection member which comprises the composition.
Owner:SHOWA DENKO KK

Chip varistor

An element body has first and second faces opposed to each other. A first conductor has one end exposed in a first face and the other end located in the element body. The second conductor has one end exposed in a second face and the other end located in the element body. The element body has a first element body section having the nonlinear voltage-current characteristics and a second element body section in which an electric current is more likely to flow than in the first element body section. The first element body section is located at least in part between the first conductor and the second conductor, in a direction in which the first conductor and the second conductor are separated from each other. The other end of the first conductor and the other end of the second conductor are located in the second element body section.
Owner:TDK CORPARATION

ESD protection device and method for manufacturing the same

An ESD protection device having high insulation reliability and excellent discharge characteristics is provided. In an ESD protection device including a first and a second discharge electrode disposed to face each other, a discharge auxiliary electrode (18) formed so as to bridge the first and second discharge electrodes, and an insulating substrate holding the first and second discharge electrodes and the discharge auxiliary electrode (18), the discharge auxiliary electrode (18) is formed of an aggregate of metal grains (24) each having a core-shell structure comprising a core portion (22) primarily formed of a first metal and a shell portion (23) primarily formed of a metal oxide containing a second metal, and the aggregate of metal grains (24) further includes an insulating resin (27) which bonds the metal grains (24) to each other.
Owner:MURATA MFG CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products