Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1057results about "Iron oxides/hydroxides" patented technology

Method and system for supplying hydrogen for use in fuel cells

The present invention provides a method and system for efficiently producing hydrogen that can be supplied to a fuel cell. The method and system of the present invention produces hydrogen in a reforming reactor using a hydrocarbon stream and water vapor stream as reactants. The hydrogen produced is purified in a hydrogen separating membrane to form a retentate stream and purified hydrogen stream. The purified hydrogen can then be fed to a fuel cell where electrical energy is produced and a fuel cell exhaust stream containing water vapor and oxygen depleted air is emitted. In one embodiment of the present invention, a means and method is provided for recycling a portion of the retentate stream to the reforming reactor for increased hydrogen yields. In another embodiment, a combustor is provided for combusting a second portion of the retentate stream to provide heat to the reforming reaction or other reactants. In a preferred embodiment, the combustion is carried out in the presence of at least a portion of the oxygen depleted air stream from the fuel cell. Thus, the system and method of the present invention advantageously uses products generated from the system to enhance the overall efficiency of the system.
Owner:MOBIL OIL CORP

Water soluble metal and semiconductor nanoparticle complexes

The invention provides a water soluble complex comprising an inner core of a metal or semi-conductor nanoparticle. The nanoparticle is coated with a hydrophobic ligand, which is encapsulated in a micelle. In an aqueous medium, the micelle comprises a hydrophilic shell and a hydrophobic core, the hydrophilic shell comprising a plurality of hydrophilic moieties, the hydrophobic core comprising a plurality of hydrophobic moieties, each hydrophobic moiety comprising at least one chain, each chain comprising a minimum of 8 atoms; wherein the total number of atoms in all chains for each moiety comprises at least 24 atoms. The micelle has a minimum average diameter of approximately 5 nm and a maximum average diameter of approximately 45 nm.
Owner:THE ROCKEFELLER UNIV

Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites

Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets. Alternatively, rather than heating, step (a) is followed by a step of dispersing the halogen-intercalated compound in a liquid medium which is subjected to ultrasonication for exfoliating the halogen-intercalated compound to produce the platelets, which are dispersed in the liquid medium. The halogen can be readily captured and re-used, thereby significantly reducing the impact of halogen to the environment. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.
Owner:GLOBAL GRAPHENE GRP INC

Non-alloying core shell nanoparticles

The present invention relates composite core / shell nanoparticles and a two-step method for their preparation. The present invention further relates to biomolecule-core / shell nanoparticle conjugates and methods for their preparation. The invention also relates to methods of detection of biomolecules comprising the biomolecule or specific binding substance-core / shell nanoparticle conjugates.
Owner:NORTHWESTERN UNIV

Coated, resuspendable magnetically responsive, transition metal oxide particles and method for the preparation thereof

The invention relates to an improved method for the manufacture of magnetically responsive particles, also called ferrofluids. The improved method involves a heat treatment step, which may occur at various times during the preparation of the materials, including during subdivision of the magnetic starting material, during the addion of a coating material, after formation of a magnetically responsive particle, or some combination thereof. The materials formed by such a process have numerous advantages over materials formed by other processes, including enhanced salt stability, increased coating uptake, and increased binding capacity. These ferrofluids have applications in a variety of preparative and diagnostic techniques, including immunoassay, cell separations, toxicity testing, food testing, environmental analysis, and MRI.
Owner:JANSSEN DIAGNOSTICS LLC

Mullite-aluminum titanate diesel exhaust filter

The invention is directed at a mullite-aluminum titanate porous diesel particulate filter constituting a porous ceramic body containing, expressed in terms of weight percent of the total body, of 60-90%, preferably 70-80%, most preferably 70% iron-aluminum titanate solid solution having a stoichiometry of Al2(1−x)Fe2xTiO5, where x is 0-0.1, and 10-40%, preferably 20-30%, most preferably 30% mullite (3Al2O3.2SiO2), and consists essentially, expressed in terms of weigh percent on the oxide basis, of 3 to 15% SiO2, 55 to 65% Al2O3, 22 to 40% TiO2, and 0 to 10% Fe2O3, and being useful for filtration of diesel exhaust. The inventive diesel particulate filter exhibits high interconnected open porosity and large median pore size, in combination with high permeability when fired to a temperature of between 1650° to 1700° C., along with high thermal shock resistance and good filtration capability.
Owner:CORNING INC

Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same

The present invention provides a high-capacity and low-cost non-aqueous electrolyte secondary battery, comprising: a negative electrode containing, as a negative electrode active material, a ssubstance capable of absorbing / desorbing lithium ions and / or metal lithium; a separator; a positive electrode; and an electrolyte, wherein the positive electrode active material contained in the positive electrode is composed of crystalline particles of an oxide containing two kinds of transition metal elements, the crystalline particles having a layered crystal structure, and oxygen atoms constituting the oxide forming a cubic closest packing structure.
Owner:PANASONIC CORP +1

Hexagonal ferrite magnetic particles, magnetic recording powder, and magnetic recording medium

Hexagonal ferrite magnetic particles have an activation volume ranging from 1,000 nm3 to 1,500 nm3, and ΔE10% / kT, thermal stability at 10% magnetization reversal, is equal to or greater than 40.
Owner:FUJIFILM CORP

Mullite-aluminum titanate diesel exhaust filter

The invention is directed at a mullite-aluminum titanate porous diesel particulate filter constituting a porous ceramic body containing, expressed in terms of weight percent of the total body, of 60-90%, preferably 70-80%, most preferably 70% iron-aluminum titanate solid solution having a stoichiometry of Al2(1-x)Fe2xTiO5, where x is 0-0.1, and 10-40%, preferably 20-30%, most preferably 30% mullite (3Al2O3.2SiO2), and consists essentially, expressed in terms of weigh percent on the oxide basis, of 3 to 15% SiO2, 55 to 65% Al2O3, 22 to 40% TiO2, and 0 to 10% Fe2O3, and being useful for filtration of diesel exhaust. The inventive diesel particulate filter exhibits high interconnected open porosity and large median pore size, in combination with high permeability when fired to a temperature of between 1650° to 1700° C., along with high thermal shock resistance and good filtration capability.
Owner:CORNING INC

Metal oxide processing methods and systems

Methods and systems for processing metal oxides from metal containing solutions. Metal containing solutions are mixed with heated aqueous oxidizing solutions and processed in a continuous process reactor or batch processing system. Combinations of temperature, pressure, molarity, Eh value, and pH value of the mixed solution are monitored and adjusted so as to maintain solution conditions within a desired stability area during processing. This results in metal oxides having high or increased pollutant loading capacities and / or oxidation states. These metal oxides may be processed according to the invention to produce co-precipitated oxides of two or more metals, metal oxides incorporating foreign cations, metal oxides precipitated on active and inactive substrates, or combinations of any or all of these forms. Metal oxides thus produced are, amongst other uses; suitable for use as a sorbent for capturing or removing target pollutants from industrial gas streams or drinking water or aqueous streams or for personal protective respirators.
Owner:ENVIROSCRUB TECH CORP

Ink-jet printing ink compositions having magnetic properties and specific core/shell binder

Specific core-shell binders and magnetic additives for use in ink-jet printing ink compositions are provided. One class of specific core / shell binders has the general formula [AmBnC'p]x, where A and B are hydrophobic components in which A exhibits a glass transition temperature Tg between about -150° and +25° C. and B exhibits a glass transition temperature greater than 25° C., C' is a component that forms hydrophilic or water-soluble component in the polymer chain, and has an ionic or non-ionic structure, m<30 wt %, n>40 wt %, and p<30 wt %, with the total of m+n+p=100 wt %, and x=1 to 100,000. The molecular weight (weight average) of the polymer is between about 1,000 and 2,000,000. The polymers useful in the practice of the invention are prepared by emulsifying the monomers and then conducting a free-radical polymerization in water. The foregoing binder polymer is used in conjunction with magnetic additives comprising either (a) inorganic magnetic compound containing at least one of iron, cobalt, and nickel or (b) organic magnetic complexes containing at least one of iron, cobalt, and nickel or (c) organic charge transfer complexes that exhibit magnetic properties. The ratio of binder (I) to colorant (pigment) is greater that 1 to 10. The concentration of the magnetice additive is within the range of 1 to 30 wt %. The general ink formulation comprises: 5 to 50 wt % water-miscible solvent; 0.5 to 10 wt % colorant; 1 to 30 wt % magnetice additive; and water.
Owner:HEWLETT PACKARD DEV CO LP

Nano-sized particles, processes of making, compositions and uses thereof

The present invention describes methods for preparing high quality nanoparticles, i.e., metal oxide based nanoparticles of uniform size and monodispersity. The nanoparticles advantageously comprise organic alkyl chain capping groups and are stable in air and in nonpolar solvents. The methods of the invention provide a simple and reproducible procedure for forming transition metal oxide nanocrystals, with yields over 80%. The highly crystalline and monodisperse nanocrystals are obtained directly without further size selection; particle size can be easily and fractionally increased by the methods. The resulting nanoparticles can exhibit magnetic and / or optical properties. These properties result from the methods used to prepare them. Also advantageously, the nanoparticles of this invention are well suited for use in a variety of industrial applications, including cosmetic and pharmaceutical formulations and compositions.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK

Positive electrode active material and nonaqueous electrolyte secondary cell including the same

A nonaqueous electrolytic secondary cell produced at low cost and having a large capacity comprises a negative electrode having an active material mainly composed of a material that at least absorbs and releases lithium ions or metallic lithium, a positive electrode, and an electrolyte. The active material of the positive electrode is an oxide containing nickel, manganese, and cobalt, and the contents of the elements are substantial the same.
Owner:PANASONIC CORP +1

Non-alloying core shell nanoparticles

The present invention relates composite core / shell nanoparticles and a two-step method for their preparation. The present invention further relates to biomolecule-core / shell nanoparticle conjugates and methods for their preparation. The invention also relates to methods of detection of biomolecules comprising the biomolecule or specific binding substance-core / shell nanoparticle conjugates.
Owner:NORTHWESTERN UNIV

Nanostructured Metal Oxides Comprising Internal Voids and Methods of Use Thereof

The present invention relates to nano structures of metal oxides having a nanostructured shell (or wall), and an internal space or void. Nanostructures may be nanoparticles, nanorod / belts / arrays, nanotubes, nanodisks, nanoboxes, hollow nanospheres, and mesoporous structures, among other nanostructures. The nanostructures are composed of polycrystalline metal oxides such as SnO2. The nanostructures may have concentric walls which surround the internal space of cavity. There may be two or more concentric shells or walls. The internal space may contain a core such ferric oxides or other materials which have functional properties. The invention also provides for a novel, inexpensive, high-yield method for mass production of hollow metal oxide nanostructures. The method may be template free or contain a template such as silica. The nanostructures prepared by the methods of the invention provide for improved cycling performance when tested using rechargeable lithium-ion batteries.
Owner:CORNELL RES FOUNDATION INC

Lithium-containing composite oxide and nonaqueous secondary cell using the same, and method for manufacturing the same

Because of the composition represented by General Formula: Li1+x+alphaNi(1-x-y+delta) / 2Mn(1-x-y-delta) / 2MyO2 (where 0<=x<=0.05, -0.05<=x+alpha<=0.05, 0<=y<=0.4; -0.1<=delta<=0.1 (when 0<=y<=0.2) or -0.24<=delta<=0.24 (when 0.2<=y<=0.4); and M is at least one element selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge and Sn), a high-density lithium-containing complex oxide with high stability of a layered crystal structure and excellent reversibility of charging / discharging can be provided, and a high-capacity non-aqueous secondary battery excellent in durability is realized by using such an oxide for a positive electrode.
Owner:MAXELL HLDG LTD

Method of synthesizing electrochemically active materials from a slurry of precursors

A method for making an active material comprises the steps of forming a slurry, spray drying the slurry to form a powdered precursor composition, and heating the powdered precursor composition at a temperature and for a time sufficient to form a reaction product. The slurry has a liquid phase and a solid phase, and contains at least an alkali metal compound and a transition metal compound. Preferably the liquid phase contains dissolved alkali metal compound, and the solid phase contains an insoluble transition metal compound, an insoluble carbonaceous material compound, or both. Electrodes and batteries are provided that contain the active materials.
Owner:RIL USA INC +1

Non-alloying core shell nanoparticles

The present invention relates composite core / shell nanoparticles and a two-step method for their preparation. The present invention further relates to biomolecule-core / shell nanoparticle conjugates and methods for their preparation. The invention also relates to methods of detection of biomolecules comprising the biomolecule-core / shell nanoparticle conjugates.
Owner:NORTHWESTERN UNIV

Process of making hydrophobic metal oxide nanoparticles

A process of treating metal oxide nanoparticles that includes mixing metal oxide nanoparticles, a solvent, and a surface treatment agent that is preferably a silane or siloxane is described. The treated metal oxide nanoparticles are rendered hydrophobic by the surface treatment agent being surface attached thereto, and are preferably dispersed in a hydrophobic aromatic polymer binder of a charge transport layer of a photoreceptor, whereby π—π interactions can be formed between the organic moieties on the surface of the nanoparticles and the aromatic components of the binder polymer to achieve a stable dispersion of the nanoparticles in the polymer that is substantially free of large sized agglomerations.
Owner:XEROX CORP

Synthetic control of metal oxide nanocrystal sizes and shapes

A general, reproducible, and simple synthetic method that employs readily available chemicals permits control of the size, shape, and size distribution of metal oxide nanocrystals. The synthesis entails reacting a metal fatty acid salt, the corresponding fatty acid, and a hydrocarbon solvent, with the reaction product being pyrolyzed to the metal oxide. Nearly monodisperse oxide nanocrystals of Fe3O4, Cr2O3, MnO, Co3O4, NiO, ZnO, SnO2, and In2O3, in a large size range (3-50 nm), are described. Size and shape control of the nanocrystals is achieved by varying the reactivity and concentration of the precursors.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ARKANSAS

Methods of Making Binary Metal Oxide Nanostructures and Methods of Controlling Morphology of Same

The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.
Owner:WONG STANISLAUS S +1

Processing method for stainless steel acid cleaning waste water and liquid

InactiveCN101269889AMeet emission compliance requirementsMeet compliance requirementsSludge treatment by de-watering/drying/thickeningIron oxides/hydroxidesLiquid wasteSludge
The invention relates to a processing method of stainless steel pickling waste liquid, which is characterized in that the processing method includes the steps that: neutral salt wastewater flows into a neutral reduction cell, and mixed acid pickling waste waters flow into a neutralizing tank; reducing agent is added into the neutral reduction cell, and then the reduced wastewater liquid is put into the neutralizing tank and is mixed with the adjusted mixed acid pickling waste waters, and liquid alkali is added into the neutralizing tank; the separated clear waste liquid removes fluorin ions in a settlement tank; neutralizing liquid is added into a final neutralizing tank to cause the pH value of treatment liquid to adjust to be neutralized wastewater liquid which passes through a sand filter to be discharged. The processing method has the advantages that metal ions and fluorin ions are performed the subsection treatment, and neutralizing agent is changed into the liquid alkali from lime cream, the requirement of reaching the standard of the waste liquid emission is not only achieved, but also the mud quantity produced by a mass of lime cream is greatly reduced, heavy metal mud of a retention pond only contains heavy metal compound, the salts of calcium fluoride and calcium sulphate, etc. are separated from the inclined plate settlement tank during the fluoridation stage, thereby the treatment cost is effectively lowered.
Owner:NINGBO BAOXIN STAINLESS STEEL

Nanoparticle production and corresponding structures

Methods are described that have the capability of producing submicron / nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and / or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron / nanoscale particles.
Owner:NEOPHOTONICS CORP

A method for recovering lithium and iron from electric vehicle lithium iron phosphate power battery

The invention discloses a method for recovering lithium and iron from a lithium iron phosphate power battery for an electromobile. The method comprises the following steps: 1) disassembling the lithium iron phosphate power battery so as to obtain a positive electrode material, smashing and screening so as to obtain a powder material; 2) adding an alkali solution in the powder material to dissolve aluminum and oxide of aluminum, and filtering so as to obtain filter mud; 3) lixiviating the filter mud with a mixed solution of an acid and a reducing agent so as to obtain lixivium; 4) adding an alkali to regulate the pH value of the lixivium to 1.5-3, precipitating to separate out iron hydroxide, and filtering so as to obtain filtrate; 5) firing iron hydroxide obtained in the step 4) so as to obtain iron oxide; 6) regulating the pH value of the lixivium to 5.0-8.0 with an alkali, precipitating impurities in the lixivium, and filtering so as to obtain filtrate; and 7) adding a solid sodium carbonate in the filtrate, and concentrating and crystallizing the obtained solution so as to obtain lithium carbonate. The recovering method disclosed by the invention has simple process, can be used for simultaneously recovering iron and lithium and can be directly used for production, and the purity of prepared lithium carbonate can reach above 98.5%.
Owner:GUANGDONG BRUNP RECYCLING TECH +1

Overall treatment method of steel works sintering dust

ActiveCN101723713ASolve efficiency problemsSolve the problem that the flue gas often exceeds the standardCalcium/strontium/barium carbonatesIron oxides/hydroxidesPotassiumSlurry
The invention relates to an overall treatment method of steel works sintering dust, which is characterized by comprising the following steps: carrying out stage treatment on electrically precipitated dust in a sintering head, conveying the electrically precipitated dust produced in a primary electric field directly to a sintering field (a stock yard or a material distribution room) for material application in case of sintering; mixing the electrically precipitated dust produced in a subsequent electric field and then carrying out stirring pulping, gradient magnetic separation, carbon selection by flotation and solid-liquid separation; when the solid-liquid separation is finished, using the obtained potassium solution for producing potassic fertilizer and extracting lead product from the obtained tailing slurry.The method of the invention has the advantages that different process routes are adopted to effectively recover and comprehensively utilize contained multiple valuable resources such as ferrum, carbon, potassium, lead and the like according to different contents of alkali metal such as potassium and sodium and heavy metal compounds such as lead, zinc and copper in different electric field precipitated dust in a sintering head electric precipitator.
Owner:HUNAN VALIN XIANGTAN IRON & STEEL CO LTD +1

Integrated technology in sequential treatment of organics and heavy metal ions wastewater

This invention offers an integrated technology in sequential treatment of wastewater. Low biodegradable organics and heavy metal ions are both contained in wastewater from surface finishing processes. The aim of the invention is to find the solution for treatment of organics and heavy metal ions in complicated wastewater that contains organics and heavy metal ions sequentially. Low biodegradable organics are oxidized by a fenton process with pH ranging from 2 to 5 and temperature ranging from 20° C. to 100° C. Heavy metal ions are then treated by a ferrite process with pH ranging from 8 to 12 and temperature ranging from 20° C. to 100° C. The integrated technology of the fenton process and the ferrite process (2FP) is advantageous to treat the wastewater from surface finishing processes, decrease the production of iron sludge caused in the fenton process and increase the quality of ferrite products.
Owner:NAT CHENG KUNG UNIV

Compositions and method for providing anisotropic conductive pathways and bonds between two sets of conductors

The invention provides a composition (3) comprising: (i) a ferrofluid comprising a colloidal suspension (4) of ferromagnetic particles in a non-magnetic carrier liquid, and (ii) a plurality of electrically-conductive particles (5) having substantially uniform sizes and shapes, dispersed in the ferrofluid. Various types of substantially non-magnetic electrically-conductive particles (5) are described. Application of a substantially uniform magnetic field by magnet means (8) to the composition (3) causes the electrically-conductive particles (5) to form a regular pattern (9). The composition is used for providing anisotropic conductive pathways (9a, 9b) between two sets of conductors (2a, 2b; 7a, 7b) in the electronics industry. The composition may be a curable adhesive composition which bonds the conductors. Alternatively or in addition the electrically-conductive particles may have a latent adhesive property e.g. the particles may be solder particles. The ferrofluid may be a colloidal suspension of ferromagnetic particles in a liquid monomer.
Owner:LOCTITE (R&D) LIMITED
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products