Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

102results about How to "Raise the draw ratio" patented technology

High melt strength polypropylene

The present invention concerns a high melt strength propylene polymer or copolymer suitable for manufacturing foams and thermoformed product exhibiting a melt strength of at least 3 g and comprising a high molar mass portion and a low or medium molar mass portion. The polymers are produced by subjecting propylene and optionally other olefins to polymerization in a plurality of polymerization reactors connected in series, employing different amounts of hydrogen as a molar mass modifier in at least two of the reactors, and carrying out the polymerization reaction in the presence of a catalyst system capable of catalyzing the formation of a high molar mass polymerization product having a MFR2 of less than 0.1 g / l0 min and a low or medium molar mass polymerization product having a MFR2 of more than 0.5 g / 10 min.
Owner:BOREALIS TECH OY

Thermoplastic monofilament fibers exhibiting low-shrink, high tenacity, and extremely high modulus levels

Unique thermoplastic monofilament fibers and yarns that exhibit heretofore unattained physical properties are provided. Such fibers are basically manufactured through the extrusion of thermoplastic resins that include a certain class of nucleating agent therein, and are able to be drawn at high ratios with such nucleating agents present that the tenacity and modulus strength are much higher than any other previously produced thermoplastic fibers, particularly those that also simultaneously exhibit extremely low shrinkage rates. Thus, such fibers require the presence of certain compounds that quickly and effectively provide rigidity to the target thermoplastic (for example, polypropylene), particularly after heat-setting. Generally, these compounds include any structure that nucleates polymer crystals within the target thermoplastic after exposure to sufficient heat to melt the initial pelletized polymer and allowing such an oriented polymer to cool. The compounds must nucleate polymer crystals at a higher temperature than the target thermoplastic without the nucleating agent during cooling. In such a manner, the "rigidifying" nucleator compounds provide nucleation sites for thermoplastic crystal growth. The preferred "rigidifying" compounds include dibenzylidene sorbitol based compounds, as well as less preferred compounds, such as [2.2.1]heptane-bicyclodicarboxylic acid, otherwise known as HPN-68, sodium benzoate, certain sodium and lithium phosphate salts [such as sodium 2,2'-methylene-bis-(4,6-di-tert-butylphenyl)phosphate, otherwise known as NA-11]. Specific methods of manufacture of such inventive thermoplastic fibers, as well as fabric articles made therefrom, are also encompassed within this invention.
Owner:MILLIKEN & CO

Suspension polymerization process for manufacturing ultra high molecular weight polyethylene, a multimodal ultra high molecular weight polyethylene homopolymeric or copolymeric composition, a ultra high molecular weight polyethylene, and their uses

The present invention relates to a suspension polymerization process for the production of ultra high molecular weight polyethylene, wherein the operation is carried out in at least two reactors of the CSTR type (continuous stirring tank reactor), in a serial configuration, wherein the first reactor is fed with solvent, monomer and, optionally, comonomer; Ziegler-Natta type catalyst, said catalyst composition having a chloride concentration of at least 55%, based on its composition, and preferably more than 76%, chlorinated cocatalyst and chain growth regulator, said continuous stirring tank reactor being kept under a pressure between 0.1 to 2.0 MPa and temperature from 40° C. to 100° C., which contents of the first reactor are transferred to the subsequent reactor, by means of a pressure differential or through pumping, wherein said subsequent reactors are kept under a pressure between 0.1 to 2.0 MPa and temperature from 40° C. to 100° C., and fed with solvent, monomer, and, optionally, comonomer, catalyst, cocatalyst and chain growth regulator, the pressure and temperature in each of the reactors being different from one another up to the “nth” reactor, the number of reactors “n” varying from 2 to 4; the suspension thus obtained in reactor “n” being centrifugated for the removal of solvent and dried in a fluidized bed drier; thereby resulting in an ultra high molecular weight polyethylene homopolymeric or copolymeric composition with polydispersity greater than or equal to 6.
Owner:BRASKEM SA

Polarizing plate, optical element, and liquid crystal display

A polyvinyl alcohol-based polarizing film is provided, and the polarizing film has excellent surface smoothness while the light transmittance and the polarization degree are improved due to the high stretch ratio. The polarizing film is obtained from a polyvinyl alcohol film having a thickness ranging from 85 μm to 150 μm by dyeing the film with a dichroic substance and stretching it to 4-7 times its original length. The polarizing film has a light transmittance ranging from 35% to 50% and a polarization degree of at least 80%, and the surface roughness in a direction perpendicular to the stretching axis is at most 0.04 μm based on a centerline average roughness. A transparent protective layer or a transparent protective plate comprising the transparent protective layer is formed on at least one surface of the polarizing film in order to provide a polarizing plate. The transparent protective layer can be subject to a pre-treatment selected from a hard-coat treatment and an anti-glare treatment. Additional optical layers are laminated on the polarizing plate in order to provide an optical element. A polarizing plate or an optical element comprising the above-mentioned polarizing film has an excellent light transmittance and polarization degree, so that stripe-shaped streaks inhibiting visibility will not be observed substantially even in a reflection mode.
Owner:NITTO DENKO CORP

Spin finish

The present spin finish composition comprises at least about 10 percent by weight based on the spin finish composition of components (a) and (b) having the formula R1—(CO)x—O—(CH(R2)—CH2—O)y—(CO)z—R3 wherein each of R1 and R3 is selected from the group consisting of hydrogen or an alkyl group having from one to 22 carbon atoms or an alkylene hydroxy group having from one to 22 carbon atoms, x is zero or one, R2 may vary within component (a) or component (b) and is selected from the group consisting of hydrogen or an alkyl group having from one to four carbon atoms, y is zero, or from one to 25, and z is zero or one, in component (a), x and z are equal to zero and the average molecular weight of component (a) is less than or equal to 1,900 and if R2 varies, component (a) is a random copolymer; and in component (b), at least x or z is equal to one or component (b) is a complex polyoxyethylene glyceride-containing compound having greater than 10 polyoxyethylene units; up to about five percent by weight based on the spin finish composition of component (c) of an ethoxylated silicone; and at least about one percent by weight based on the spin finish composition of component (d) having the formula R4(CH2O(CO)aR5)b wherein R4 is —C— or —COC—; a is 0 or 1; R5 is —H; from —CH3 to —C18H37; or —CH(R6)—CH2O; b is 4 or 6; and R6 is —H or —CH3 or —H and —CH3 in a ratio of 10:90 to 90:10. The present spin finish composition may be used on industrial yarn.
Owner:PERFORMANCE FIBERS

Fiber Cure with Extended Irradiators

A method for producing an optical fiber that includes a method for producing an optical fiber, said method comprising: (i) drawing a bare optical fiber from a preform along a first pathway at a rate of at least 10 m / sec; (ii) contacting said bare optical fiber with a region of fluid in a fluid bearing and redirecting said bare optical fiber along a second pathway as said bare optical fiber is drawn across said region of fluid cushion; (iii) coating the bare optical fiber; and (iv) irradiating said coated fiber in at least one irradiation zone to at least partially cure said coating, while subjecting the optical fiber to UV light.
Owner:CORNING INC

Polarizing film and process for producing it, polarizing plate, and optical element

The present invention provides a polarizing film having a high polarization degree and high transmittance, a process for producing the polarizing film, and a polarizing plate using the polarizing film, and an optical member. In the process for producing the polarizing film, a polyvinyl alcohol-based film is dry-stretched uniaxially, relaxed in an aqueous solution containing iodine or a dichroic dyestuff, and further stretched in an aqueous solution containing a PVA crossling agent. It is preferable that the polyvinyl alcohol-based film has a dry-stretch ratio of at least 2, the film after relaxation has a stretch ratio of at least 1.02, and the total stretch ratio is at most 6.5. It is also preferable that the relaxation rate is at most 10% of the dry-stretch ratio.
Owner:NITTO DENKO CORP

Dry spraying-wet spinning method for manufacturing aramid III fiber

The invention discloses a dry spraying-wet spinning method for manufacturing an aramid III fiber. The method comprises the following processing steps that A, a spinning stock solution is subjected to fine filtering and defoaming, and then extruded by a spinneret plate to form trickle; the trickle passes through an air layer and then enters a coagulating bath; B, the spinneret plate extruded trickle is coagulated in a coagulating forming device by the coagulating bath; a nascent fiber is obtained; the coagulating forming device comprises a coagulating disc and a U-shaped coagulating pipe; C, a solvent and an impurity of the coagulated and formed aramid III nascent fiber are removed by a washing technology; D, the washed fiber is oiled and dried; an aramid III fiber grey yarn is obtained; and E, the aramid III fiber grey yarn is subjected to heat treatment by heat shaping equipment; and the finished fiber is obtained. According to the method, a spinning speed and the production efficiency of the aramid III fiber are increased and improved greatly, so that the production cost of the fiber is lowered effectively; the manufactured aramid III fiber has excellent fiber performance and appearance quality and high cost performance; and the strength of the aramid III fiber is higher than that of a commercially available aramid 1414 high-strength product K129.
Owner:CHINA BLUESTAR CHENGRAND CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products