Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3349results about "Monocomponent polyolefin artificial filament" patented technology

Preparation method of porous fiber non-woven fabric

The invention relates to a preparation method of a porous fiber non-woven fabric. The aim of the preparation method is to improve the product performance of the conventional non-woven fabric, so that the non-woven fabric meets the requirements on high-precision and high-performance filter. The technical scheme is that the preparation method of the porous fiber non-woven fabric comprises the following steps in sequence: (1) uniformly mixing a polymer and a diluent to obtain a blend with 10 to 60 percent of polymer; (2) melting and extruding the blend in the step (1) by adopting a screw extruder granulator, and directly cooling and granulating in air; (3) producing master batches in the step (2) by melt-down equipment to obtain a primary non-woven fabric; (4) extracting to remove the diluent from the primary non-woven fabric in the step (3), performing pore-forming on fibers in the non-woven fabric, and drying to obtain the porous fiber non-wave fabric; (5) recovering mixed waste liquid of the diluent and an extraction agent for reuse.
Owner:浙江省轻工业品质量检验研究院

Isotactic propylene copolymers, their preparation and use

Unique copolymers comprising propylene, ethylene and / or one or more unsaturated comonomers are characterized as having: at least one, preferably more than one, of the following properties: (i) 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a B-value greater than about 1.4 when the comonomer content of the copolymer is at least about 3 wt %, (iii) a skewness index, Six, greater than about −1.20, (iv) a DSC curve with a Tme that remains essentially the same and a Tmax that decreases as the amount of comonomer in the copolymer is increased, and (v) an X-ray diffraction pattern that reports more gamma-form crystals than a comparable copolymer prepared with a Ziegler-Natta catalyst. These polypropylene polymers are made using a nonmetallocene, metal-centered, heteroaryl ligand catalyst. These polymers can be blended with other polymers, and are useful in the manufacture of films, sheets, foams, fibers and molded articles.
Owner:DOW GLOBAL TECH LLC

Process for forming micro-fiber cellulosic nonwoven webs from a cellulose solution by melt blown technology and the products made thereby

This invention relates to a process of melt blowing a cellulose solution through a concentric melt blown die with multiple rows of spinning nozzles to form cellulosic microfiber webs with different web structures. The process comprises the steps of (a) extruding a cellulose solution (dope) through a melt blown spinneret with multiple rows of spinning nozzles; (b) drawing each individual extrudate filament to fine fiber diameter by its own air jet; (c) coagulating and entangling the fine fibers with a series of pressured hydro needling jets of recycling solution of the mixture of cellulose solvent and non-solvent in the spin-line; (d) collecting the stream of microfibers, air and needling jets on a moving collecting surface to form cellulosic fiber web; (e) hydro-entangling the said pre-bonded web downstream with at least one set of hydro needling jets of recycling solvent / non-solvent solution for forming well bonded nonwoven web; (f) regenerating the fine fibers in at least one bath for at least 5 seconds; (g) further regenerating and washing the fine fibers in another bath for at least 5 seconds; (h) pinching the well bonded melt blown cellulosic nonwoven with pressure rollers to remove major portions of the non-solvent; (i) drying the nonwoven web by heat, or vacuum or both, and (j) winding the nonwoven web into rolls.
Owner:BIAX FIBERFILM CORP

Plasticized polyolefin compositions

The present invention relates to a composition comprising 1) from 1 to 98 weight % of a first propylene polymer having a melting point of 100° C. or more, 2) from 5 to 98 weight % of a second propylene polymer having a heat of fusion of 70 J / g or less and a tacticity index of 75% or more, 3) from 0.5 to 75 weight % of a non-functionalized plasticizer (“NFP”) having a viscosity index of 120 or more, based upon the weight of the first polymer, second polymer, and the NFP, and articles therefrom
Owner:EXXONMOBIL CHEM PAT INC

Reinforced polymers

Provided is a method for the production of a reinforced polymer, which method comprises:(a) introducing carbon nanotubes into a polymer to provide a mixture of the polymer and the nanotubes;(b) stretching the mixture at or above the melting temperature (Tm) of the polymer to orient the carbon nanotubes; and(c) stretching the mixture in the solid state to further orient the carbon nanotubes.
Owner:FINA RES SA

Surface modified particulate and sintered or injection molded products

Disclosed are interfacially modified particulate and polymer composite material for use in injection molding processes, such as metal injection molding and additive process such as 3D printing. The composite material is uniquely adapted for powder metallurgy processes. Improved products are provided under process conditions through surface modified powders that are produced by extrusion, injection molding, additive processes such as 3D printing, Press and Sinter, or rapid prototyping.
Owner:TUNDRA COMPOSITES LLC

Process for drawing gel-spun polyethylene yarns

A process for drawing essentially diluent-free gel-spun polyethylene multi-filament yarns in a forced convection air oven and the drawn yarns produced thereby, The process conditions of draw ratio, stretch rate, residence time, oven length and feed speed are selected in specific relation to one another so as to achieve enhanced efficiency and productivity. The drawn yarns are useful in armor, composites, fishing line, ropes, sutures, fabrics and other applications.
Owner:HONEYWELL INT INC

Blends and sealant compositions comprising isotactic propylene copolymers

Films with excellent machine direction (MD) tear properties comprise at least one layer made from a polymer comprising:(A) at least 50 weight percent (wt %) propylene; and(B) at least 5 wt % ethylene and / or one or more unsaturated comonomers.Representative of component (B) unsatuarated comonomers are the C4-20 α-olefins, C4-20 dienes, styrenic compounds, and the like. Preferably, the film has at least one of a (i) haze value of less than about 10, (ii) 45 degree gloss of greater than about 65, and (iii) dart value of greater than about 100 g / mil. In one preferred embodiment, the layer comprises a compolymer characterized as having at least one of the following properties: (i) 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a B-value greater than about 1.4 when the comonomer content, i.e., the units derived from ethylene and / or the unsaturated comonomer(s), of the copolymer is at least about 3 wt %, (iii) a skewness index, Six, greater than about −1.20, (iv) a DSC curve with a Tme that remains essentially the same and a Tmax that decreases as the amount of comonomer, i.e., the units derived from ethylene and / or the unsaturated comonomer(s), in the copolymer is increased, and (v) an X-ray diffraction pattern that reports more gamma-form crystals than a comparable copolymer prepared with a Ziegler-Natta (Z-N) catalyst.
Owner:DOW GLOBAL TECH LLC

Highly nucleated thermoplastic articles

InactiveUS6534574B1Exceptional nucleation efficacyExcellent calcium stearate compatibilityOrganic active ingredientsOrganic chemistryPolyolefinCrystallization temperature
Compounds and compositions comprising specific metal salts of bicyclo[2.2.1 ]heptane dicarboxylate salts in order to provide highly desirable properties within polyolefin articles are provided. The inventive salts and derivatives thereof are useful as nucleating and / or clarifying agents for such polyolefin, provide excellent crystallization temperatures, stiffness, and calcium stearate compatibility within target polyolefin. Also, such compounds exhibit very low hygroscopicity and therefore excellent shelf stability as powdered or granular formulations. Polyolefin additive compositions and methods of producing polyolefin with such compounds are also contemplated within this invention.
Owner:MILLIKEN & CO

High efficiency synthetic filter medium

A high efficiency filtration medium comprised of a nonwoven filter web of electret charged fibers of a nonconductive thermoplastic resin having a resistivity greater than 1014 ohm-cm, preferably polypropylene. The nonwoven filter web has a basis weight (BW) of less than 60 grams / m2, an effective fiber diameter (EFD) of less than 5 microns and a penetration (PEN) of less than 0.03%, wherein the ratio); BW / (EFD.PEN) is greater than 200. The invention filter medium can be easily used in applications requiring HEPA performance at relatively low pressure drops.
Owner:3M INNOVATIVE PROPERTIES CO

Manufacture of polyolefin fishing line

Yarns and fishing lines are made by a process that includes the step of exposing an opaque yarn made from ultrahigh molecular weight, gel spun polyolefin filaments to a temperature within the melting point range of the filaments for a time sufficient to at least partially fuse the contact surfaces of adjacent filaments. For ultrahigh molecular weight, gel spun polyethylene, this temperature is preferably within the range from about 150 DEG -157 DEG C. The surface fusion between and among filaments imparts desirable handling characteristics to the ultrahigh molecular weight, gel spun polyolefin yarns and fishing lines that are similar to those of a conventional monofilaments. Preferably, the temperature, residence time, and stretching ratio at the selected temperature are chosen to provide a fishing line exhibiting a tensile modulus within the range from about 230 g / d to about 780 g / d with a tenacity of at least 15 g / d.
Owner:PURE FISHING

Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them

The present invention provides an aggregate of nanofibers having less spread of single fiber fineness values that can be used in wide applications without limitation to the shape and the kind of the polymer, and a method for manufacturing the same. The present invention is an aggregate of nanofibers made of a thermoplastic polymer having single fiber fineness by number average in a range from 1×10−7 to 2×10−4 dtex and single fibers of 60% or more in fineness ratio have single fiber fineness in a range from 1×10−7 to 2×10−4 dtex.
Owner:TORAY IND INC

Hollow fiber microfiltration membranes and a method of making these membranes

A hollow fiber microfiltration (MF) membrane is provided. The casting solution used to make this membrane includes a fiber-forming polymer having a degree of polymerization greater than about 1000, a water-soluble polymer, an anhydride with about 2 to 12 carbon atoms, and a solvent. The membrane is formed by mixing and heating these components to form a viscous dope and then extruding the dope through an annular orifice to form a hollow fiber MF membrane. The hollow fiber membrane is then fed through a coagulation bath and two leaching baths. The membrane is especially useful for filtering liquids, such as wine and juice, so as to remove bacteria, gel, and solid particles from the liquids.
Owner:KOCH MEMBRANE SYST

Antibacterial polypropylene melt-blow non-woven filter material and preparation method thereof

The invention relates to a polypropylene melt-blow non-woven filter material, in particular to an antibacterial polypropylene melt-blow non-woven filter material and a preparation method thereof. The polypropylene melt-blow non-woven filter material is prepared from the following raw materials in parts by weight: 85-95 parts of melt-blow polypropylene slices, 1-5 parts of nanometer tourmaline, 1-3 parts of nanometer titanium oxide, 1-3 parts of nanometer zinc oxide, 0.1-3 parts of a coupling agent, 0.1-2 parts of a dispersing agent and 0-0.5 part of an antioxidant. According to the antibacterial polypropylene melt-blow non-woven filter material prepared with the method, a formula and a preparation process are improved, so that the electret polarity time of the prepared filter material can be up to 5-6 years, and the antibacterial performance is superior to the prior art.
Owner:XINGNUO ECONOMIC & TRADE DEV SHANGHAI

Ultra high molecular weight polyethylene fibers

A method for the production of films / fibers of UHMWPE below 3 mils and preferably about 2 mils in thickness. The process involves calendering and / or drawing the materials of the prior art under careful tension control at a temperature above the melting point of the UHMWPE material. Before and after subsequent slitting, and / or fibrillation, UV resistance treatments, etc the thin films / fibers thus produced find use in such diverse applications as personal armor, dental floss, and sails for sail boats.
Owner:EI DU PONT DE NEMOURS & CO

Polymeric fibers and articles made therefrom

Fibers described herein comprise a composition including a polymer and graphene sheets. The fibers can be further formed into yarns, cords, and fabrics. The fibers can be in the form of polyamide, polyester, acrylic, acetate, modacrylic, spandex, lyocell fibers, and the like. Such fibers can take on a variety of forms, including, staple fibers, spun fibers, monofilaments, multifilaments, and the like.
Owner:VORBECK MATERIALS CORP +1

Process for drawing gel-spun polyethylene yarns

A process for drawing essentially diluent-free gel-spun polyethylene multi-filament yarns in a forced convection air oven and the drawn yarns produced thereby, The process conditions of draw ratio, stretch rate, residence time, oven length and feed speed are selected in specific relation to one another so as to achieve enhanced efficiency and productivity. The drawn yarns are useful in armor, composites, fishing line, ropes, sutures, fabrics and other applications.
Owner:HONEYWELL INT INC

Plasticized polyolefin compositions

The present invention relates to a composition comprising 1) from 1 to 98 weight % of a first propylene polymer having a melting point of 100° C. or more, 2) from 5 to 98 weight % of a second propylene polymer having a heat of fusion of 70 J / g or less and a tacticity index of 75% or more, 3) from 0.5 to 75 weight % of a non-functionalized plasticizer (“NFP”) having a viscosity index of 120 or more, based upon the weight of the first polymer, second polymer, and the NFP, and articles therefrom
Owner:EXXONMOBIL CHEM PAT INC

Water stable fibers and articles comprising starch, and methods of making the same

Water stable fibers and articles made therefrom are formed from a thermoplastic composition comprising destructured starch, polyhydric alcohol, triglyceride, and optionally acid. Processes for making water stable compositions may comprise melt extruding a mixture of destructured starch, polyhydric alcohol, triglyceride, and optionally acid, to form an extrudate, and heating the mixture, extrudate, or both to provide a water stable article.
Owner:THE PROCTER & GAMBLE COMPANY

Antioxidant and ultravioresistant polypropylene woven bag raw material

The invention discloses an antioxidant and ultravioresistant polypropylene woven bag raw material. The polypropylene woven bag raw material is added with anti-oxidant B215, anti-oxidant 1010, auxiliary anti-oxidant DLTP (dilauryl thiodipropionate) or DSTP (distearyl thiodipropionate), ultraviolet absorber UV531, light stabilizer GW-480, stearic acid, calcium stearate, calcium carbonate, mono-alkoxy titanate coupling agent YDH-101, and zinc stearate in powdered polypropylene, and then subjected to wiredrawing treatment in a drawing machine. Compared with the prior art, the raw material provided by the invention has advantages of good antioxidant and ultravioresistant properties, the raw material is particularly suitable for being used as woven bag raw materials, especially for being used as the raw material for manufacturing container bags.
Owner:尚勇

Articles comprising propylene-based elastomers

The present invention is directed generally to the use of propylene-based elastomers in articles. The propylene-based elastomers have isotactic polypropylene crystallinity, a melting point by DSC of 110° C. or less, a heat of fusion of from 5 to 50 J / g, and comprise at least 75 wt % propylene-derived units, at least 6 wt % ethylene-derived units, and optionally diene-derived units. The present invention is also directed to processes for making articles comprising propylene-based elastomers.
Owner:EXXONMOBIL CHEM PAT INC

Thermoplastic monofilament fibers exhibiting low-shrink, high tenacity, and extremely high modulus levels

Unique thermoplastic monofilament fibers and yarns that exhibit heretofore unattained physical properties are provided. Such fibers are basically manufactured through the extrusion of thermoplastic resins that include a certain class of nucleating agent therein, and are able to be drawn at high ratios with such nucleating agents present that the tenacity and modulus strength are much higher than any other previously produced thermoplastic fibers, particularly those that also simultaneously exhibit extremely low shrinkage rates. Thus, such fibers require the presence of certain compounds that quickly and effectively provide rigidity to the target thermoplastic (for example, polypropylene), particularly after heat-setting. Generally, these compounds include any structure that nucleates polymer crystals within the target thermoplastic after exposure to sufficient heat to melt the initial pelletized polymer and allowing such an oriented polymer to cool. The compounds must nucleate polymer crystals at a higher temperature than the target thermoplastic without the nucleating agent during cooling. In such a manner, the "rigidifying" nucleator compounds provide nucleation sites for thermoplastic crystal growth. The preferred "rigidifying" compounds include dibenzylidene sorbitol based compounds, as well as less preferred compounds, such as [2.2.1]heptane-bicyclodicarboxylic acid, otherwise known as HPN-68, sodium benzoate, certain sodium and lithium phosphate salts [such as sodium 2,2'-methylene-bis-(4,6-di-tert-butylphenyl)phosphate, otherwise known as NA-11]. Specific methods of manufacture of such inventive thermoplastic fibers, as well as fabric articles made therefrom, are also encompassed within this invention.
Owner:MILLIKEN & CO

Nonwoven fabric and fibers

InactiveUS20070173162A1High strengthFuzzing levels can be controlledWoven fabricsNon-woven fabricsElastomerPlastomer
The present invention relates to nonwoven webs or fabrics. In particular, the present invention relates to nonwoven webs having superior abrasion resistance and excellent softness characteristics. The nonwoven materials comprise fibers made from of a polymer blend of isotactic polypropylene, reactor grade propylene based elastomers or plastomers, and optionally, a homoge-neously branched ethylene / alpha olefin plastomer or elastomer. The isotactic polypropylene can be homopolymer polypropylene, and random copolymers of propylene and one or more alpha-olefins. The reactor grade propylene based elastomers or plastomers plastomer have a molecular weight distribution of less than about 3.5, and a heat of fusion less than about 90 joules / gm. In particular, the reactor grade propylene based elastomers or plastomers contains from about 3 to about 15 percent by weight of units derived from an ethylene, and a melt flow rate of from about 2 to about 200 grams / 10 minutes. The present invention also relates to cold drawn textured fibers comprising of a polymer blend of isotactic polypropylene and reactor grade propylene based elastomers or plastomers.
Owner:ETHIOPIA SAMUEL +7

Porous fiber

The present invention provides a nanoporous fiber being substantially free from coarse pores and having homogeneously dispersed nanopores, unlike conventional porous fibers. A porous fiber has pores each having a diameter of 100 nm or less, in which the area ratio of pores each having a diameter of 200 nm or more to the total cross section of the fiber is 1.5% or less, and the pores are unconnected pores, or a porous fiber has pores each having a diameter of 100 nm or less, in which the area ratio of pores each having a diameter of 200 nm or more to the total cross section of the fiber is 1.5% or less, the pores are connected pores, and the fiber has a strength of 1.0 cN / dtex or more.
Owner:TORAY IND INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products