Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

96 results about "Dram capacitor" patented technology

Semiconductor memory device

ActiveUS20070228427A1Increasing oxygen coordination numberHigh dielectric constantTransistorSolid-state devicesDielectricEngineering
HfO2 films and ZrO2 films are currently being developed for use as capacitor dielectric films in 85 nm technology node DRAM. However, these films will be difficult to use in 65 nm technology node or later DRAM, since they have a relative dielectric constant of only 20-25. The dielectric constant of such films may be increased by stabilizing their cubic phase. However, this results in an increase in the leakage current along the crystal grain boundaries, which makes it difficult to use these films as capacitor dielectric films. To overcome this problem, the present invention dopes a base material of HfO2 or ZrO2 with an oxide of an element having a large ion radius, such as Y or La, to increase the oxygen coordination number of the base material and thereby increase its relative dielectric constant to 30 or higher even when the base material is in its amorphous state. Thus, the present invention provides dielectric films that can be used to form DRAM capacitors that meet the 65 nm technology node or later.
Owner:HITACHI LTD

Method of manufacturing non-volatile DRAM

A method of forming a non-volatile DRAM includes, in part: forming p-well and an n-well between two trench isolation regions formed in a semiconductor substrate, forming a polysilicon control gate of the non-volatile device disposed in the non-volatile DRAM, forming a first oxide spacer above portions of the body region and adjacent said first control gate, forming gate oxide layers of varying thicknesses above the body region, forming the guiding gate of the non-volatile device and the gate of an associated passgate transistor, forming LDD implant regions of the non-volatile device and the associated pass-gate transistor, forming source / drain regions of the non-volatile device and the associated pass-gate transistor, depositing a dielectric layer over the polysilicon guiding gate of the non-volatile device and the polysilicon gate of the associated passgate transistor, forming polysilicon landing pads, and forming polysilicon vertical walls defining capacitor plates of the non-volatile DRAM capacitor.
Owner:O2IC

Method for making y-shaped multi-fin stacked capacitors for dynamic random access memory cells

InactiveUS6083790ACost-effective manufacturing processTransistorSolid-state devicesCapacitanceBit line
An array of DRAM cells having Y-shaped multi-fin stacked capacitors with increased capacitance is achieved. A planar first insulating layer is formed over the semi-conductor devices on the substrate. Polycide bit lines are formed on the first insulating layer, and a second insulating layer and a silicon nitride (Si3N4) etch-stop layer are conformally deposited. A multilayer, composed of a alternating insulating and polysilicon layers, is conformally deposited over the bit lines. Capacitor node contact openings are etched in the multilayer and in the underlying layers to the substrate. A fourth polysilicon layer is deposited sufficiently thick to fill the node contact openings and to form the node contacts. The multilayer is then patterned to leave portions over the node contacts, and an isotropic etch is used to remove the insulating layers exposed in the sidewalls of the patterned multilayer to provide Y-shaped multi-fin capacitor bottom electrodes over the bit lines. These Y-shaped multi-fin capacitors increase the capacitance by 37% over T-shaped multi-fin capacitors. The DRAM capacitors are then completed by forming an interelectrode dielectric layer on the bottom electrodes and by depositing a fifth polysilicon layer to form the capacitor top electrodes.
Owner:TAIWAN SEMICON MFG CO LTD

Method for manufacturing semiconductor capacitor having double dielectric layer therein

The method for manufacturing a DRAM capacitor is employed to enhance charge capacitance and electrical endurance of the DRAM capacitor by structuring a double dielectric layer of aluminum oxide (Al2O3) and hafnium oxide (HfO2). The method includes steps of: preparing an active matrix including a semiconductor substrate, an ILD formed on the semiconductor substrate and a storage node obtained after patterning the ILD into a predetermined configuration; forming a bottom electrode on top faces of the storage node and portions of the ILD; forming a diffusion barrier on an exposed surface of the bottom electrode; forming a double dielectric layer including an aluminum oxide layer and a hafnium oxide layer, wherein the aluminum oxide layer and the hafnium oxide layer are formed on the diffusion barrier in succession; carrying out an annealing process for recovering dielectric properties of the aluminum oxide layer and the hafnium oxide layer; and forming a top electrode on the hafnium oxide layer.
Owner:SK HYNIX INC

Molybdenum oxide top electrode for dram capacitors

A metal oxide bilayer second electrode for a MIM DRAM capacitor is formed wherein the layer of the electrode that is in contact with the dielectric layer (i.e. bottom layer) has a desired composition and crystal structure. An example is crystalline MoO2 if the dielectric layer is TiO2 in the rutile phase. The other component of the bilayer (i.e. top layer) is a sub-oxide of the same material as the bottom layer. The top layer serves to protect the bottom layer from oxidation during subsequent PMA or other DRAM fabrication steps by reacting with any oxygen species before they can reach the bottom layer of the bilayer second electrode.
Owner:INTERMOLECULAR +1

Method for manufacturing DRAM capacitor structure and formed structure

The invention relates to a method for forming a capacitor structure used for a dynamic random access memory. The method comprises the steps as follows: a cover semiconductor substrate is formed; a first dielectric layer of a cover device is formed; a via hole in the first dielectric layer is formed; a first oxide layer covering the first dielectric layer is formed; a barrier layer covering the first oxide layer is formed; a second oxide layer covering the barrier layer is formed; a groove region which passes through a part of the second oxide layer, a part of the barrier layer and a part of the first oxide layer is formed; a bottom electrode structure is formed to sketch out the groove region; a mask layer is used for protecting the bottom electrode structure and selectively removing the second oxide layer and up to the barrier layer which has etching and resisting effect to expose the external region of the bottom electrode structure; dielectric layers of the capacitor which cover the external region of the bottom electrode structure and the internal region of the bottom electrode structure are formed; a plate of the upper capacitor which covers the dielectric layers of the capacitor is formed to form the capacitor structure.
Owner:SEMICON MFG INT (SHANGHAI) CORP +1

High performance dielectric stack for dram capacitor

A method for fabricating a DRAM capacitor stack is described wherein the dielectric material is a multi-layer stack formed from a highly-doped material combined with a lightly or non-doped material. The highly-doped material remains amorphous with a crystalline content of less than 30% after an annealing step. The lightly or non-doped material becomes crystalline with a crystalline content of equal to or greater than 30% after an annealing step. The dielectric multi-layer stack maintains a high k-value while minimizing the leakage current and the EOT value.
Owner:INTERMOLECULAR +1

ROM embedded DRAM with anti-fuse programming

A ROM embedded DRAM provides ROM cells that can be electrically programmed to a data state using DRAM capacitor memory cells. Numerous techniques for reading the memory cells are provided if a single state memory is desired. For example, bias techniques allow un-programmed ROM cells to be read accurately. In one embodiment, the memory includes program circuitry to short capacitor plates together by breaking down an intermediate dielectric layer using anti-fuse programming techniques.
Owner:MICRON TECH INC

Process for rounding an intersection between an HSG-SI grain and a polysilicon layer

The capacitor of a DRAM cell is formed by depositing a layer of doped polysilicon, patterning the layer of doped polysilicon to define the extent of the capacitor's lower electrode and depositing a layer of hemispherical-grained silicon (HSG-Si) on the layer of doped polysilicon. A thin layer of amorphous silicon is then formed over the HSG-Si layer. This textured polysilicon structure forms the lower electrode of the DRAM capacitor. A dielectric layer is formed on the lower electrode, and an upper electrode is formed from a second layer of doped polysilicon. As-formed HSG-Si grains tend to form sharp intersections with the polysilicon layers on which they grow. When these HSG-Si grains are exposed to a thermal oxidation environment, poor quality oxides are formed at the sharp corners between the HSG-Si grains and the doped polysilicon layer. The poor quality oxides at the sharp corners between the HSG-Si grains and the doped polysilicon layer break down comparatively readily, and appears to cause leakage currents in capacitors having HSG-Si electrodes. By growing a thin amorphous silicon layer over the surface of the HSG-Si layer, the intersection between the HSG-Si grains and the layer of polysilicon is rounded. Subsequent growth of a thermal oxide, or the formation of other dielectric layers, provides a more reliable capacitor.
Owner:UNITED MICROELECTRONICS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products