Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

77results about How to "Suppressed dislocation" patented technology

Semiconductor device

A semiconductor device includes a semiconductor substrate formed of at least two kinds of group III elements and nitrogen, an active layer formed on the semiconductor substrate, and a nitride semiconductor layer formed on a surface of the semiconductor substrate and formed between the semiconductor substrate and the active layer. The nitride semiconductor layer is formed of the same constituent elements of the semiconductor substrate. A composition ratio of the lightest element among the group III elements of the nitride semiconductor layer is higher than a composition ratio of the corresponding element of the semiconductor substrate.
Owner:EPISTAR CORP

Epitaxial wafer and method of manufacturing the same

A method of manufacturing an epitaxial wafer, including a silicon substrate having a surface sliced from single-crystalline silicon and a silicon epitaxial layer deposited on the surface of the silicon substrate, includes an oxygen concentration controlling heat treatment process in which a heat treatment of the epitaxial layer is performed under a non-oxidizing atmosphere after the epitaxial growth such that an oxygen concentration of the surface of the silicon epitaxial layer is set to 1.0×1017 to 12×1017 atoms / cm3 (ASTM F-121, 1979).
Owner:SUMCO CORP

Method for self-assembly growth of three-dimensional ordered polyporous material

ActiveCN101429049AOvercoming the disadvantage of not being able to self-assemble large-size colloidal spheres synergisticallyWill not affect the flowCeramicwareEvaporationSolvent
The invention relates to a method for self-assembly growth of three-dimensional orderly porous materials, which is a method for self-assembly growth of multi-component material colloid crystals with single structures or composite structures and three-dimensional orderly porous membranes by combining assistant acceleration of evaporation through characteristic infrared light and the control of the boiling temperature of a solvent by decompression. The method basically overcomes the defect that the prior method is not suitable for the situations of overlarge colloid particles, overhigh boiling point of the solvent in a colloidal solution system, no high temperature resistance of the colloid particles, incapability of completing crystal growth and so on when the prior method is applied to cooperated self-assembly growth of the multi-component colloid crystals and three-dimensional orderly porous materials of the multi-component colloid crystals. The method has the characteristics of high efficiency, easy control, simple operation and good repeatability, can grow the high-quality multi-component colloid crystals and the three-dimensional orderly porous membranes, and is suitable for self-assembly and cooperated self-assembly of multi-component colloid particle mixed systems with various particle diameters and various varieties.
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI

Method for Producing Silicon Wafer

The present invention provides a method for producing a silicon wafer at least including a step of performing RTA heat treatment with respect to a silicon wafer in an atmospheric gas, wherein nitrogen gas is used as the atmospheric gas, which is mixed with oxygen at a concentration of less than 100 ppm so as to perform the heat treatment. Hereby a method for producing a high-quality wafer can be provided, where the RTA heat treatment subject to the silicon wafer can be performed at a low temperature or over a short period of time, so that generation of slip dislocation of the silicon wafer can be suppressed, and at the same time vacancies can be implanted inside the silicon wafer without using NH3.
Owner:SHIN-ETSU HANDOTAI CO LTD

Semiconductor assembly with built-in stiffener and integrated dual routing circuitries and method of making the same

A semiconductor assembly with built-in stiffener and integrated dual routing circuitries is characterized in that a semiconductor device and a first routing circuitry are positioned within a through opening of a stiffener whereas a second routing circuitry extends to an area outside of the through opening of the stiffener. The mechanical robustness of the stiffener can prevent the assembly from warping. The first routing circuitry can enlarge the pad size and pitch of the semiconductor device, whereas the second routing circuitry not only provides further fan-out wiring structure, but also mechanically binds the first routing circuitry with the stiffener.
Owner:BRIDGE SEMICON

Sic epitaxial wafer

An SiC epitaxial wafer according to the present invention includes: an SiC single crystal substrate; and a carrier concentration variation layer disposed on one face side of the SiC single crystal substrate, wherein the carrier concentration variation layer includes: high concentration layers in which carrier concentrations thereof are higher than carrier concentrations of adjacent layers; and low concentration layers in which carrier concentrations are lower than in adjacent layers, and the high concentration layers and the low concentration layers are laminated alternately.
Owner:SHOWA DENKO KK

Semiconductor device and manufacturing method

The object of the present invention is to provide a semiconductor device comprising an n-type channel field effect transistor and a p-type channel field effect transistor, which has a high degree of reliability and excellent drain current characteristics. The gist of the invention for attaining the object resides in disposing a silicon nitride film to the side wall of a trench for an active region in which the n-type channel field effect transistor is formed and disposing the silicon nitride film only in the direction perpendicular to the channel direction to the sidewall of the trench for the active region of the p-type channel field effect transistor. According to the present invention, a semiconductor device comprising an n-type channel field effect transistor and a p-type channel field effect transistor of excellent current characteristics can be provided.
Owner:HITACHI LTD

AlN buffer layer of LED and epitaxial growth method of buffer layer

ActiveCN108878609ASuppressed dislocationLess material defectsSemiconductor devicesPhysicsVoltage
The invention discloses an AlN buffer layer of an LED and an epitaxial growth method of the buffer layer. The method comprises the steps of performing growing of an AlN-1 thin film layer, cooling a sapphire substrate, and performing growing of an AlN-2 thin film layer, a Si-doped n-GaN layer, a light-emitting layer, a p-type AlGaN layer and a high-temperature p type GaN layer, and carrying out cooling, wherein the step of performing growing of the AlN-1 thin film layer comprises the steps of putting the sapphire substrate into a magnetron sputtering reaction device to be heated to 650 DEG C, and introducing Ar, N2 and O2, wherein the sputtering bias voltage is controlled to be reduced from 3000V to 2200V, and the target-substrate distance is set to be 3-4cm, and the sputtering thickness ofthe AlN-1 thin film layer is 15-20nm; and the step of performing growing of the AlN-2 thin film layer comprises the steps of putting the sapphire substrate with the AlN-1 thin film layer in an MOCVDreaction cavity, wherein the temperature is controlled to be gradually increased to 950 DEG C from 850 DEG C, the pressure of the reaction chamber is kept to be 250 mbar, and H2, NH3 and a TMAl sourceare pumped, and the AlN-2 thin film layer with the growth thickness of 15-20 nm is grown Compared with the prior art, the brightness of the LED is higher.
Owner:XIANGNENG HUALEI OPTOELECTRONICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products