Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3374 results about "Reticle" patented technology

A reticle, or reticule (from Latin reticulum, meaning 'net'), also known as a graticule (from Latin craticula, meaning 'gridiron'), is a pattern of fine lines or markings built into the eyepiece of a sighting device, such as a telescopic sight in a telescope, a microscope, or the screen of an oscilloscope, to provide measurement references during visual examination. Today, engraved lines or embedded fibers may be replaced by a computer-generated image superimposed on a screen or eyepiece. Both terms may be used to describe any set of lines used for optical measurement, but in modern use reticle is most commonly used for gunsights and such, while graticule is more widely used for the oscilloscope display, microscope slides, and similar roles.

Firearm system for data acquisition and control

A microprocessor circuit that is used to monitor and control a firearm. The microprocessor circuit accomplishes this by monitoring various sensor & control inputs, and acting on these inputs to execute user defined functions. The microprocessor circuit can use the sensory input to determine firearm statistics. These statistics can include the number of times the firearm has been shot, the efficiency of the firearm automatic action, range-to-target, and et cetera. The firearm system can also use a combination of sensors to fabricate a bullet chronograph whereby the muzzle velocity of a cartridge can be determined. These statistics can be date-stamped and recorded into memory. Statistics from Law Enforcement firearms can be used for courtroom evidence and police reporting. These statistics can also be used for firearm maintenance and warranty repair. The microprocessor circuit can display the statistical data to the user via simple light emitting diodes, or sophisticated liquid crystal displays. Data can also be downloaded to a computer docking station as well. The microprocessor circuit can also display the information within the optics of a riflescope. When used in conjunction with a laser range finder sensor, the microprocessor circuit can adjust the electronic cross-hairs (reticle) to compensate for the bullet trajectory.
Owner:MCRAE MICHAEL WILLIAM

Telescopic sight for individual weapon with automatic aiming and adjustment

The invention concerns a telescopic rifle sight for individual weapon equipped with at least one step micro-motor designed to vary the angle of the sight relative to the axis of the weapon and the initial axis of aim, thereby adequately varying the whole sight assembly and thus varying the original position of the sight reticle from the original point of aim to the required point of aim.
Owner:GUARY GABRIEL +1

Methods and systems for inspecting reticles using aerial imaging and die-to-database detection

Methods and systems for inspecting a reticle are provided. In an embodiment, a method may include forming an aerial image of the reticle using a set of exposure conditions. The reticle may include optical proximity correction (OPC) features. The method may also include detecting defects on the reticle by comparing the aerial image to a reference image stored in a database. The reference image may be substantially optically equivalent to an image of the reticle that would be printed on a specimen by an exposure system under the set of exposure conditions. The reference image may not include images of the OPC features. Therefore, a substantial portion of the defects include defects that would be printed onto the specimen by the exposure system using the reticle under the set of exposure conditions. The method may also include indicating the defects that are detected in critical regions of the reticle.
Owner:KLA TENCOR CORP

Method for error reduction in lithography

The present invention relates to a method and a system for predicting and correcting geometrical errors in lithography using masks, such as large-area photomasks or reticles, and exposure stations, such as wafer steppers or projection aligners, printing the pattern of said masks on a workpiece, such as a display panel or a semi-conductor wafer. The method according to the invention comprises the steps of collecting information about a mask substrate, a mask writer, an exposure stati n, and / or about behavior of a processing step that will occur after the writing of the mask. Further the method comprises predicting from the combined information distorsions occuring in the pattern, when it is subsequently printed on the workpiece; calculating from said prediction a correction to diminish said predicted distorsion, and exposing said pattern onto said mask substrate while applying said correction for said distorsions.
Owner:MICRONIC LASER SYST AB
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products