Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

475results about How to "Small resistance" patented technology

LED lighting system

Provided is an LED lighting system with a smaller heat resistance of the LED, which can be produced by simpler mounting steps and is capable of three-dimensionally arranging the LEDs depending on required directivity of each system. A plurality of LEDs 2 are mounted on an FPC 1 which has a radial shape and can be flat when developed. The LEDs 2 connected by printed wiring to each other and linked to terminals 3 and 4 are attached on a surface of a core 5 made of a material having a high thermal conductivity. Heat generated at a p-n junction of the LEDs 2 is transmitted to the core 5 via the FPC 1 and a thermal-conductive adhesive.
Owner:ATEX CO LTD

Field-effect transistor and method for fabricating the same

An AlN buffer layer, an undoped GaN layer, an undoped AlGaN layer, a p-type GaN layer and a heavily doped p-type GaN layer are formed in this order. A gate electrode forms an Ohmic contact with the heavily doped p-type GaN layer. A source electrode and a drain electrode are provided on the undoped AlGaN layer. A pn junction is formed in a gate region by a two dimensional electron gas generated at an interface between the undoped AlGaN layer and the undoped GaN layer and the p-type GaN layer, so that a gate voltage can be increased.
Owner:PANASONIC CORP

Thermal interface material and method for manufacturing same

A thermal interface material (40) includes a macromolecular material (32), and a plurality of carbon nanotubes (22) embedded in the macromolecular material uniformly. The thermal interface material includes a first surface (42) and an opposite second surface (44). Each carbon nanotube is open at both ends thereof, and extends from the first surface to the second surface of the thermal interface material. A method for manufacturing the thermal interface material includes the steps of: (a) forming an array of carbon nanotubes on a substrate; (b) submerging the carbon nanotubes in a liquid macromolecular material; (c) solidifying the liquid macromolecular material; and (d) cutting the solidified liquid macromolecular material to obtain the thermal interface material with the carbon nanotubes secured therein.
Owner:TSINGHUA UNIV +1

Method of manufacturing solar cell and solar cell manufactured thereby

A solar cell attaining high efficiency in photoelectric conversion is provided. A method of manufacturing a solar cell having a grid electrode and a main electrode for external output of electric power from the grid electrode includes the steps of forming a small-width grid electrode on a light-receiving surface of a substrate having a pn junction by sintering a metal paste material, and forming a bar-shaped main electrode electrically connected to the grid electrode.
Owner:SHARP KK

Carbon nanotube film based solar cell and fabricating method thereof

A carbon nanotube-based solar cell and fabricating method thereof are provided. The method is achieved by applying carbon nanotube film (1) photoelectric conversion material and an upper electrode simultaneously. The method improves photoelectric conversion efficiency and life time of the solar cell, the fabricating method of the solar cell is simple, and the fabricating cost is low.
Owner:TSINGHUA UNIV

High performance electrical circuit structure

A high performance electrical interconnect adapted to provide an interface between terminals on first and second circuit members. The electrical interconnect includes a first circuitry layer with a first surface and a second surface having a plurality of contact pads adapted to electrically coupled with the terminals on the first circuit member. At least one dielectric layer is printed on the first surface of the first circuitry layer. The dielectric layer includes a plurality recesses. A conductive material is deposited in at least a portion of the recesses to create circuit geometry electrically coupled with the first circuitry layer. A second circuitry layer includes a first surface a plurality of contact pads adapted to electrically couple with the terminals on the second circuit member and a second surface attached to the dielectric layers. The circuit geometry electrically couples the first circuitry layer to the second circuitry layer.
Owner:LCP MEDICAL TECH LLC

Camber angle controlling device

A camber angle applying device is controlled to adjust the camber angle of wheels to a predetermined value. Therefore, the characteristics (or a high gripping property) of a high gripping force and the characteristic (or a low rolling resistance) of a small rolling resistance can be separately used as the performance of the wheels. By utilizing the high gripping property of the wheels, therefore, a vehicle is enabled to reduce its energy consumption, while retaining its running characteristics (such as a turning performance, an accelerating performance or a braking performance), by utilizing the rolling resistance of the wheels. Moreover, the camber angle applying device is controlled to reduce the rolling resistance of the wheels, so that the energy loss to occur in the wheels during running can be reduced to further reduce the energy consumption of the vehicle.
Owner:EQUOS RES

Copper pillar full metal via electrical circuit structure

An electrical interconnect including a first circuitry layer with a first surface and a second surface. At least a first dielectric layer is printed on the first surface of the first circuitry layer to include a plurality of first recesses. A conductive material is deposited in a plurality of the first recesses to form a plurality of first conductive pillars electrically coupled to, and extending generally perpendicular to, the first circuitry layer. At least a second dielectric layer is printed on the first dielectric layer to include a plurality of second recesses generally aligned with a plurality of the first conductive pillars. A conductive material is deposited in a plurality of the second recesses to form a plurality of second conductive pillars electrically coupled to, and extending parallel the first conductive pillars.
Owner:HSIO TECH

High performance surface mount electrical interconnect

A surface mount electrical interconnect adapted to provide an interface between solder balls on a BGA device and a PCB. The electrical interconnect includes a socket substrate with a first surface, a second surface, and a plurality of openings sized and configured to receive the solder balls on the BGA device. A plurality of electrically conductive contact tabs are bonded to the first surface of the socket substrate so that contact tips on the contact tabs extend into the openings. The contact tips electrically couple with the BGA device when the solder balls are positioned in the openings. Vias are located in the openings that electrically couple the contact tabs to contact pads located proximate the second surface of the socket substrate. Solder balls are bonded to the contact pad that are adapted to electrically and mechanically couple the electrical interconnect to the PCB.
Owner:HSIO TECH

Electric wheel

The rotor of the outer-rotor type wheel-in motor of the electric wheel includes a field generator facing the outer surface of the stator across from an electrical gap. The field generator includes pole magnets magnetized in the radial direction with respect to the rotation axis of the wheel-in motor,- adjacent two of the-pole magnets having opposite directions of magnetization so that magnet polarity of the field generator alternates at a predetermined pole pitch along the circumferential direction, yoke magnets magnetized in the circumferential direction each of which is put between corresponding adjacent two of the pole magnets to strengthen magnetic field formed by the pole magnets, and a field generator support member to which the field generator is fixed, the field generator support member being fixed to the rotary shaft which is rotatably supported by a wheel suspension system of a vehicle.
Owner:DENSO CORP

Solid electrolytic capacitor

A capacitor element includes a positive electrode body made of valve metal, a dielectric oxide layer on the positive electrode body, a solid electrolytic layer made of conductive polymer on the dielectric oxide layer, and a negative electrode layer on the solid electrolytic layer. A solid electrolytic capacitor includes the capacitor element, a package made of insulating resin covering the capacitor element, a base electrode provided at an edge surface of the package and made of non-valve metal coupled with the positive electrode body, a diffusion layer for connecting the positive electrode body to the base electrode, an external electrode on the base electrode, and an external electrode connected to the negative electrode layer. The solid electrolytic capacitor reduces the number of components and processes to reduce its cost and to have a small size, and has a small equivalent series resistance and a small equivalent series inductance.
Owner:PANASONIC CORP

Semiconductor laser device and manufacturing method thereof

It is an object of the present invention to provide a semiconductor laser device with high-yielding in which a clack generated in an epitaxial growth layer is restrained and to the manufacturing method thereof, the semiconductor laser device includes a GaN substrate 1, an n-type GaN layer 2, an n-type AlGaN cladding layer 3, a n-type GaN guide layer 4, an InGaN multiple quantum well active layer 5, an undoped-GaN guide layer 6, a p-type AlGaN electron overflow suppression layer 7, a p-type GaN guide layer 8, a SiO2 blocking layer 9, an Ni / ITO cladding layer electrode 10 as a transparent electrode, a Ti / Au pad electrode 11, and a Ti / Al / Ni / Au electrode 12. The SiO2 blocking layer 9 is formed above the InGaN multiple quantum well active layer 5 so as to have an opening. The Ni / ITO cladding layer electrode 10 is formed inside the opening, and which is transparent for the light from the InGaN multiple quantum well active layer, and serves as a cladding layer.
Owner:PANASONIC CORP

Semiconductor device having super junction construction and method for manufacturing the same

A semiconductor device includes a body region, a drift region having a first part and a second part, and a trench gate electrode. The body region is disposed on the drift region. The first and second parts extend in an extending direction so that the second part is adjacent to the first part. The trench gate electrode penetrates the body region and reaches the drift region so that the trench gate electrode faces the body region and the drift region through an insulation layer. The trench gate electrode extends in a direction crossing with the extending direction of the first and second parts. The first part includes a portion near the trench gate electrode, which has an impurity concentration equal to or lower than that of the body region.
Owner:DENSO CORP

Thermal interface material and method for manufacturing same

A thermal interface material (TIM) includes a macromolecular material and carbon nanotubes embedded in the macromolecular material. The TIM has a first surface and an opposite second surface. Each nanotube is open at opposite ends thereof, and extends from the first surface to the second surface. Two ends of each nanotube extend out from the two surfaces of the thermal interface material and form two bent ends. A method for manufacturing the TIM includes: (a) forming an array of carbon nanotubes on a substrate; (b) submerging the nanotubes in a liquid paraffin; (c) solidifying the liquid paraffin; (d) cutting the paraffin in a direction perpendicular to long axes of the nanotubes, whereby each nanotube is open; and (e) cutting the paraffin in the same direction according to a predetermined thickness to obtain the thermal interface material, whereby each nanotube is open.
Owner:HON HAI PRECISION IND CO LTD +1

Light-emitting diode assembly

A light-emitting diode (LED) assembly includes a circuit board (10), at least one LED (20) being electrically connected with and being arranged on a side of the circuit board, and a heat dissipation apparatus (40) being arranged on an opposite side of the circuit board. The circuit board defines at least one through hole (102) corresponding to a position of the at least one LED. Thermal interface material (140) is filled in the at least one hole of the circuit board to thermally interconnect the at least one LED and the heat dissipation apparatus. The thermal interface material is a composition of nano-material and macromolecular material.
Owner:HON HAI PRECISION IND CO LTD

Liquid separation device, flow channel material and process for producing the same

A liquid separation device is provided, and is capable of suppressing the lowering of filtration function due to an increase in flow channel resistance of permeated liquid which results in a separation membrane falling in a groove of a permeated liquid flow channel material along with accompanied breakage of the separation membrane surface. A permeated liquid flow channel material is disposed on the back side of a separation membrane composed of a sheet-like material having a linear groove and a linear crest alternately arrayed on one surface or both surfaces, wherein a groove width of the linear groove in the sheet-like material is 10 to 200 μm, and a ratio of the groove width of the linear groove to the pitch of the linear groove is 0.45 or more.
Owner:TORAY IND INC

Contact sheet and socket including same

A contact sheet is provided including two insulative base sheets having a plurality of through-holes formed therethrough in an array pattern and a plurality of conductive contacts interposed between the insulative base sheets. Each contact includes a fixed part bonded to an end of a respective through-hole and an integral moving part contiguous with the fixed part. The moving part includes a contact portion formed as an elastic cantilever. Part of the moving part protrudes from one side of the base sheet inside the through-hole and the contact portion elastically extends from the other side of the base sheet. The total area of the through-hole and the fixed part of the contact is greater than a unit grid area formed by an arrangement of the terminals of an electronic device, and the length of the moving part, including the contact portion, substantially corresponds to the overall length of the through-hole.
Owner:NGK INSULATORS LTD

Resonator, unit having resonator, oscillator having unit and electronic apparatus having oscillator

An electronic apparatus comprises a display portion and a plurality of oscillators, one of which is a quartz crystal oscillator comprising: a quartz crystal oscillating circuit comprising; an amplification circuit and a feedback circuit. For example, the feedback circuit is constructed by a quartz crystal resonator comprising vibrational arms and a base portion, and having novel shape and electrode construction. Also, the quartz crystal resonator is housed in a package. In addition, from a relationship of an amplification rate of the amplification circuit and a feedback rate of the feedback circuit, an output signal of the quartz crystal oscillating circuit having an oscillation frequency of a fundamental mode of vibration for the quartz crystal resonator can be provided with a frequency of high stability.
Owner:PIEDEK TECHNICAL LAB 50

Silicon based thin film solar cell

According to the present invention, sufficient light trapping effect can be exhibited and series resistance can be kept small, by sequentially forming a silicon based low refractive index layer and a thin silicon based interface layer on a backside of a photoelectric conversion layer observed from a light incident side, and as a result a silicon based thin film solar cell may be provided efficiently and at low cost.
Owner:KANEKA CORP

Chip resistor and method for manufacturing same

A chip resistor (R1) includes a resistor element (1) having a first surface (1a) and a second surface (1b) opposite to the first surface. Two main electrodes (21), spaced from each other, are provided on the first surface (1a), while two auxiliary electrodes (22), spaced from each other, are provided on the second surface (1b). The auxiliary electrodes face the main electrodes (21) via the resistor element (1). The main electrodes (21) and the auxiliary electrodes (22) are made of the same material.
Owner:ROHM CO LTD

Display device and projection type display apparatus

A display device having extremely short writing time to a pixel such as the liquid crystal display device of a dot sequential drive method using a single-crystal silicon transistor as a switching element is provided in which in the case where a display area is divided into two or more areas, the degradation of picture quality is prevented to perform a high definition display. In a display device of a matrix drive method in which gate lines X in the row direction and data lines Y in the column direction are arranged in matrix shape and a pixel P is arranged at the intersection of the gate line and the data line, a display area is divided into two or more areas 1A and 1B which are driven independently from each other; wiring layout of signal lines 8A and 8B which transfer display data d to each of the areas 1A and 1B is approximately symmetrical with a division boundary line of those areas positioned in between; and control unit 12 which makes a control to perform writing of the display data at least to the pixels P next to each other with the division boundary line positioned in between at approximately the same timing.
Owner:SONY CORP

Phase change memory device and fabrication method thereof

A phase change memory device is disclosed. A first dielectric layer having a sidewall is provided. A bottom electrode is adjacent to the sidewall of the first dielectric layer, wherein the bottom electrode comprises a seed layer and a conductive layer. A second dielectric layer is adjacent to a side of the bottom electrode opposite the sidewall of the first dielectric layer. A top electrode couples the bottom electrode through a phase change layer.
Owner:IND TECH RES INST +5

Infrared sensor ic, and infrared sensor and manufacturing method thereof

An infrared sensor IC and an infrared sensor, which are extremely small and are not easily affected by electromagnetic noise and thermal fluctuation, and a manufacturing method thereof are provided. A compound semiconductor that has a small device resistance and a large electron mobility is used for a sensor (2), and then, the compound semiconductor sensor (2) and an integrated circuit (3), which processes an electrical signal output by the compound semiconductor sensor (2) and performs an operation, are arranged in a single package using hybrid formation. In this manner, an infrared sensor IC that can be operated at room temperature can be provided by a microminiature and simple package that is not conventionally produced.
Owner:ASAHI KASEI ELECTRONICS CO LTD

Epitaxial wafer and semiconductor element

A silicon carbide semiconductor element, including: i) an n-type silicon carbide substrate doped with a dopant, such as nitrogen, at a concentration C, wherein the substrate has a lattice constant that decreases with doping; ii) an n-type silicon carbide epitaxially-grown layer doped with the dopant, but at a smaller concentration than the substrate; and iii) an n-type buffer layer doped with the dopant, and arranged between the substrate and the epitaxially-grown layer, wherein the buffer layer has a multilayer structure in which two or more layers having the same thickness are laminated, and is configured such that, based on a number of layers (N) in the multilayer structure, a doping concentration of a K-th layer from a silicon carbide epitaxially-grown layer side is C·K / (N+1).
Owner:MITSUBISHI ELECTRIC CORP

Chip resistor and method for manufacturing same

A chip resistor (R1) includes a resistor element (1) having a first surface (1a) and a second surface (1b) opposite to the first surface. Two main electrodes (21), spaced from each other, are provided on the first surface (1a), while two auxiliary electrodes (22), spaced from each other, are provided on the second surface (1b). The auxiliary electrodes face the main electrodes (21) via the resistor element (1). The main electrodes (21) and the auxiliary electrodes (22) are made of the same material.
Owner:ROHM CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products