Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1359results about "Nitrous oxide capture" patented technology

Pt-Pd diesel oxidation catalyst with CO/HC light-off and HC storage function

The present invention is directed to a diesel oxidation catalyst for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO) and the reduction of nitrogen oxides (NOx). More particularly, the present invention is directed to a novel washcoat composition comprising two distinct washcoat layers containing two distinctly different ratios of Pt:Pd.
Owner:BASF CATALYSTS LLC

Pt-Pd diesel oxidation catalyst with CO/HC light-off and HC storage function

The present invention is directed to a diesel oxidation catalyst for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO) and the reduction of nitrogen oxides (NOx). More particularly, the present invention is directed to a novel washcoat composition comprising two distinct washcoat layers containing two distinctly different ratios of Pt:Pd.
Owner:BASF CATALYSTS LLC

Zero platinum group metal catalysts

The present invention pertains to catalyst systems for nitrogen oxide, carbon monoxide, hydrocarbon, and sulfur reactions that are free or substantially free of platinum group metals. The catalyst system of the present invention comprise a substrate and a washcoat, wherein the washcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst system may optionally have an overcoat, wherein the overcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalysts, or mixtures thereof.
Owner:CATALYTIC SOLUTIONS INC

Integrated NOx and PM reduction devices for the treatment of emissions from internal combustion engines

One concept of the inventors relates to a system and method in which a particulate filter comprises at least about 40% by weight of an NOx adsorbant. The filter can be used as both an NOx trap and a particulate filter. By constructing the filter elements using a substantial amount of NOx adsorbant, a large volume of NOx adsorbant can be incorporated into the particulate filter, which substantially reduces the volume and expense of an exhaust system that includes both a catalytic diesel particulate filter and an NOx trap having a large quantity of NOx adsorbant. In a preferred embodiment, the filter also oxidizes NO to NO2. In another preferred embodiment, an SCR catalyst is position downstream of the filter elements.
Owner:EATON CORP

Preparation method of low-temperature selective catalytic reduction (SCR) catalyst by removing NOx from flue gas

The invention provides a preparation method of a selective catalytic reduction (SCR) catalyst Mn-Ce-M / TiO2 by removing NOx from flue gas, wherein M represents one or more of composite oxides, namely Fe, Co, Cu, Cr, Zr and Al, the molar ratio of the elements is Ti: Mn: Ce: M =1:(0.005-1):(0.005-1):(0-1). In the invention, an improved coprecipitation method is adopted, and an intermediate compound, namely titanium nitrate Ti(NO3)4 is taken as a precursor of TiO2, thus the influence of the other impurities in the precipitation process is overcome; by changing the dispersing homogeneous degree of MnOx and CeO2 on the surface of a carrier TiO2, the activity of the catalyst is improved and the temperature of the SCR reaction is reduced; by adjusting the preparation condition of the TiO2 precursor, the sulfur resistance and water resistance of the catalyst are improved completely; and by adding the elements, such as Fe, Co, Cu, Cr, Zr and Al and the like, the activity and resistance of the catalyst are further modified.
Owner:GUODIAN SCI & TECH RES INST +1

Novel sorbents and purification and bulk separation of gas streams

InactiveUS20080264254A1Large capacityLittle and no corrosive effectNitrous oxide captureGas treatmentSorbentDesorption
Porous-material-supported polymer sorbents and process for removal of undesirable gases such as H2S, COS, CO2, N2O, NO, NO2, SO2, SO3, HCl, HF, HCN, NH3, H2O, C2H5OH, CH3OH, HCHO, CHCl3, CH2Cl2, CH3Cl, CS2, C4H4S, CH3SH, and CH3—S—CH3 from various gas streams such as natural gas, coal / biomass gasification gas, biogas, landfill gas, coal mine gas, ammonia syngas, H2 and oxo-syngas, Fe ore reduction gas, reformate gas, refinery process gases, indoor air, fuel cell anode fuel gas and cathode air are disclosed. The sorbents have numerous advantages such as high breakthrough capacity, high sorption / desorption rates, little or no corrosive effect and are easily regenerated. The sorbents may be prepared by loading H2S—, COS—, CO2—, N2O, NO—, NO2—, SO2—, SO3—, HCl—, HF—, HCN—, NH3—, H2O—, C2H5OH—, CH3OH—, HCHO—, CHCl3—, CH2Cl2—, CH3Cl—, CS2—, C4H4S—, CH3SH—, CH3—S—CH3-philic polymer(s) or mixtures thereof, as well as any one or more of H2S—, COS—, CO2—, N2O, NO—, NO2—, SO2—, SO3—, HCl—, HF—, HCN—, NH3—, H2O—, C2H5OH—, CH3OH—, HCHO—, CHCl3—, CH2Cl2—, CH3Cl—, CS2—, C4H4S—, CH3SH—, CH3—S—CH3-philic compound(s) or mixtures thereof on to porous materials such as mesoporous, microporous or macroporous materials. The sorbents may be employed in processes such as one-stage and multi-stage processes to remove and recover H2S, COS, CO2, N2O, NO, NO2, SO2, SO3, HCl, HF, HCN, NH3, H2O, C2H5OH, CH3OH, HCHO, CHCl3, CH2Cl2, CH3Cl, CS2, C4H4S, CH3SH and CH3—S—CH3 from gas streams by use of, such as, fixed-bed sorbers, fluidized-bed sorbers, moving-bed sorbers, and rotating-bed sorbers.
Owner:PENN STATE RES FOUND +1

Method and apparatus for removing mercury species from hot flue gas

A method of removing mercury from flue gas containing mercury and particulate solids emanating from a fossil-fuel energy conversion plant and passing through a flue gas duct. The method includes (a) contacting the mercury in the flue gas with a solution containing at least one chloride-containing salt dissolved in a solvent by injecting the solution into the flue gas duct at an injection location, in order to oxidize mercury into HgCl2, (b) heating the solution prior to or after step (a) to at least about 300° C., and (c) removing oxidized mercury from the flue gas with a device for removing particulate solids from the flue gas.
Owner:FOSTER WHEELER ENERGY CORP

Catalyst and method for reduction of nitrogen oxides

InactiveUS20060029535A1Efficient workSelective catalytic reductionNitrous oxide captureNitrogen compoundsCerium nitrateIron salts
A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N2O was not detected (detection limit: 0.6 percent N2O).
Owner:LOS ALAMOS NATIONAL SECURITY

Method and apparatus for gas purification

InactiveUS20060162556A1Superior N2O removal efficiencyNitrous oxide captureGas treatmentSeparation factorSorbent
This invention comprises an adsorption process for the removal of at least N2O from a feed gas stream that also contains nitrogen and possibly CO2 and water. In the process the feed stream is passed over adsorbents to remove impurities such as CO2 and water, then over an additional adsorbent having a high N2O / N2 separation factor. In a preferred mode the invention is an air prepurification process for the removal of impurities from air prior to cryogenic separation of air. An apparatus for operating the process is also disclosed.
Owner:PRAXAIR TECH INC

Novel graphite nanocatalysts

Novel catalysts comprised of graphitic nanostructures. The graphitic nanostructure catalysts are suitable for catalyzing reactions such as oxidation, hydrogenation, oxidative-hydrogenation, and dehydrogenation.
Owner:CATALYTIC MATERIALS

Ammonia slip catalyst designed to be first in an scr system

Catalyst articles having an ammonia slip catalyst (ASC) comprising a blend of platinum on a support with low ammonia storage and a first SCR catalyst, and a second catalyst, such as a diesel oxidation catalyst, a diesel exotherm catalyst (DEC), a NOx absorber, a selective catalytic reduction / passive NOx adsorber (SCR / PNA), a cold-start catalyst (CSC) or a three-way catalyst (TWC) are disclosed. The catalyst articles can also contain one or two additional SCR catalysts. The catalysts can be present in one of various configurations. The catalytic articles are useful for selective catalytic reduction (SCR) of NOx in exhaust gases and in reducing the amount of ammonia slip. Methods of using the catalytic articles in an SCR process, where the amount of ammonia slip is reduced, are also described.
Owner:JOHNSON MATTHEY PLC

Exhaust system for enhanced reduction of nitrogen oxides and particulates from diesel engines

A diesel engine aftertreatment exhaust system uses catalyzed soot filters for particulate matter reduction and urea SCR catalysts for NOx reduction on diesel engines in a combined system to lower particulate matter and NOx at the same time. With this integral emission control system, diesel engines are able to meet ultra low emission standards.
Owner:ENGELHARD CORP

Process and apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons

The present invention relates to a novel process for sustainable, continuous production of hydrogen and carbon by catalytic dissociation or decomposition of hydrocarbons at elevated temperatures using in-situ generated carbon particles. Carbon particles are produced by decomposition of carbonaceous materials in response to an energy input. The energy input can be provided by at least one of a non-oxidative and oxidative means. The non-oxidative means of the energy input includes a high temperature source, or different types of plasma, such as, thermal, non-thermal, microwave, corona discharge, glow discharge, dielectric barrier discharge, or radiation sources, such as, electron beam, gamma, ultraviolet (UV). The oxidative means of the energy input includes oxygen, air, ozone, nitrous oxide (NO2) and other oxidizing agents. The method, apparatus and process of the present invention is applicable to any gaseous or liquid hydrocarbon fuel and it produces no or significantly less CO2 emissions compared to conventional processes.
Owner:UNIV OF CENT FLORIDA RES FOUND INC

Exhaust Gas Treatment System Including an HC-SCR and Two-way Catalyst and Method of Using the Same

An exhaust gas treatment system for a diesel engine is disclosed. The exhaust gas treatment system includes a hydrocarbon selective catalytic reduction catalyst (HC-SCR) in fluid communication with a diesel engine to receive an exhaust gas flow therefrom. The system also includes a two-way catalyst in fluid communication with the HC-SCR to receive the exhaust gas flow therefrom, the two-way catalyst comprising a urea selective catalytic reduction catalyst and a diesel particulate filter (DPF).
Owner:GM GLOBAL TECH OPERATIONS LLC

Method for preparation and activation of multimetallic zeolite catalysts, a catalyst composition and application for n2o abatement

The present invention relates to the preparation and activation of multimetallic zeolites loaded with transition metals for N2O abatement in tail-gases from different sources. The N2O-containing gas is brought in contact with a catalyst comprising Fe and a second, third, or any additional transition metal (Cu, Co, Ni, Mn, Cr, V), with a total metal content ranging from 0.1-1.0 wt. %, on a zeolite support (MFI or BEA) at 523-873 K. Not 10 only the combination and loading of metals, but also the method of incorporation in the zeolite and its activation is essential to obtain active and stable catalysts. The synergy between metals was observed in Fe—Cu, Fe—Co, and Fe—Co—Cu systems, but not with combinations of iron with other transition metals. The optimal catalysts show high N2O conversions (>80%) at temperatures <623 K and stable behaviour for >2000 hours in pilot-scale tests with a zeolite-coated monolithic reactor.
Owner:YARA INT ASA

Purification of air

Process of reducing water, CO2 and N2O in feed air, which: a first adsorbent such as alumina (25-40% volume) and a second adsorbent such as X zeolite (60-75% volume) are used; the online time of the adsorbent is determined by determining the concentration measured by an analyzer for CO2 concentration at a position within the length of the second adsorbent when a maximum level of N2O is simultaneously obtained at the downstream end of the second adsorbent in the feed direction, wherein the online time is the time taken from commencing passing the feed air to the first and second adsorbents to the measurement by the analyzer of the determined concentration of CO2; at least the second adsorbent is regenerated by heated regeneration gas at a temperature of 140° C.-220° C.; and the molar ratio of the regenerating gas to feed air supplied during one iteration of the cycle is 0.08-0.5.
Owner:AIR PROD & CHEM INC

Production and use of a soil amendment made by the combined production of hydrogen, sequestered carbon and utilizing off gases containing carbon dioxide

This invention relates a series of steps to provide an economical production of a carbon based fertilizer and soil amendment made during the capture of greenhouse gases from the combustion of fossil and non fossil fuels. The invention uses biomass and other carbonaceous sources through pyrolytic conversion to gases and charcoal, to allow for the further production of co-products, such as hydrogen and ammonia. The invention also relates to the combination of hydrated ammonia, combustion flue gas exhaust, and charcoal, provide for the conversion of the charcoal into a valued added soil amendment to return essential trace minerals and plant nutrients to the soil. The ability to produce a large volume carbon co-product while removing mandated emissions and producing renewable based hydrogen provides an economic gain to a large number small and large businesses and increase the chance of achieving significant reductions in greenhouse gas emissions.
Owner:丹尼·马歇尔·戴 +1

Natural gas vehicle tai-gas clean-up catalyst and preparation method thereof

The invention relates to a high-performance natural gas vehicle tail-gas clean-up catalyst and preparation method thereof, wherein the catalyst has higher catalytic conversion performance to CO, HC, NOx, especially capable of effectively conversing methane at low temperature. The catalyst comprises a first carrier, a second carrier on the first carrier and active components, characterized in that: the second carrier comprises a molecular sieve modified by the metal oxides and cerium zirconium solid solution; the active components comprise two or three kinds of noble metal platinum, palladium and rhodium. The first carrier is cordierite ceramic honeycomb carrier and the second carrier loads and the cerium, zirconium solid solution loaded with one or more than one noble metal selected from the platinum, palladium and rhodium is used as the first layer load on the cordierite ceramic honeycomb carrier and the molecular sieve modified by the metal oxide and loaded with one or more than one noble metal selected from the platinum, palladium and rhodium is used as the second layer load on the first load.
Owner:昆明贵研催化剂有限责任公司

Method for the Decomposition of N2O, Catalyst Therefor and Preparation of This Catalyst

The invention relates to a method for the catalytic decomposition of N2O in a gas containing N2O in the presence of a catalyst, wherein the catalyst comprises a zeolite that has been loaded with a first metal selected from the group of noble metals consisting of ruthenium, rhodium, silver, rhenium, osmium, iridium, platinum and gold, and with a second metal selected from the group of transition metals consisting of chromium, manganese, iron cobalt, nickel and copper, and wherein the loading of the zeolite with metals has been obtained by first loading the zeolite with the noble metal and then with the transition metal, as well as a catalyst for this method and a method for the preparation of this catalyst.
Owner:NEDERLANDSE ORG VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK (TNO)

Nasal mask

A surgical mask for use in dental procedures, and oral or facial surgery, formed of a continuous sheet of flexible material comprising a nose-conforming shell incorporating adhesive material for sealing and for maintaining position on the patient during the dental or surgical procedure. The mask forms an encasement for input / output manifolds, and terminates in flexible flange at the columella-labial junction; the mask includes a manifold for receiving and directing N2O / O2 into the nasal vault of the patient, and for the removal of exhalant and the scavenging of gases from the work area.
Owner:GUYETTE ROBERT F

Diesel oxidation catalyst and exhaust system

ActiveUS20150202572A1High activityImprovement in NO oxidation activityNitrous oxide captureCombination devicesManganeseNitric oxide
An oxidation catalyst for treating an exhaust gas from a diesel engine and an exhaust system comprising the oxidation catalyst are described. The oxidation catalyst comprises: a first washcoat region for oxidising carbon monoxide (CO) and hydrocarbons (HCs), wherein the first washcoat region comprises a first platinum group metal (PGM) and a first support material; a second washcoat region for oxidising nitric oxide (NO), wherein the second washcoat region comprises platinum (Pt), manganese (Mn) and a second support material; and a substrate having an inlet end and an outlet end; wherein the second washcoat region is arranged to contact the exhaust gas at the outlet end of the substrate and after contact of the exhaust gas with the first washcoat region.
Owner:JOHNSON MATTHEY PLC

Method for controlling a scr catalyst

A method for controlling a selective catalytic reduction catalyst in an exhaust line of an internal combustion engine is disclosed, wherein the supply of a quantity of a gaseous ammonia reductant to the SCR catalyst uses a closed-loop SCR catalyst model coupled to a SCR-out NOx sensor that measures a SCR-out NOx emission value. The closed-loop SCR catalyst model uses a relationship linking the measured SCR-out NOx value to the NOx conversion efficiency and the ammonia slip. The actual NH3 emission value and / or an actual SCR-out NOx indicative value are computed based upon differentiation of said relationship.
Owner:DELPHI INT OPERATIONS LUXEMBOURG S A R L +1

Fluid purification system with low temperature purifier

A system and method for processing a matrix fluid to remove one or more impurities (such as moisture from a process gas). The purifier includes a pre-cooler that receives the matrix fluid and cools the matrix fluid to a second, lower temperature. A container is provided to contain a purifier element made up of a high surface area material. The container includes an inlet for receiving the matrix fluid from the pre-cooler and an outlet for outputting the matrix fluid after it is forced to flow through the purifier element. The purifier includes a cooler in thermal contact with an outer surface of the container to cool the outer surface of the container to a purifying temperature, which is selected to be below the ambient temperature and above a phase change point of the matrix fluid and is typically in the range of about 0 to −200° C.
Owner:MATHESON TRI GAS

NOx adsorber and method of regenerating same

New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.
Owner:CATERPILLAR INC

Zeolite catalyst with improved NOX reduction in SCR

InactiveUS20070134146A1Improved selective catalytic reductionImprove performanceNitrous oxide captureAluminium compoundsIon exchangeLow sodium
The present invention is directed to a novel metal-promoted zeolite catalyst, a method of producing the catalyst and a method of using the catalyst for the selective catalytic reduction of NOx with improved hydrothermal durability. The novel metal-promoted zeolite is formed from a low sodium zeolite and is hydrothermally treated after metal ion-exchange.
Owner:BASF CORP

Apparatus for use in regenerating adsorbent

InactiveUS7066986B2Improved mixing and uniformityHigh heat transfer co-efficientNitrous oxide captureSolidificationDesorptionEngineering
An adsorber vessel for use in the adsorption of a component from a gas and subsequent regeneration by thermally induced desorption of the component comprises an inlet for regeneration gas having an inlet nozzle containing at least one heater element, and an outlet for regeneration gas, the inlet and outlet for regeneration being separated by a flow path including a flow chamber containing a body of adsorbent, and wherein the body of adsorbent has a first end which is adjacent the inlet for regeneration gas and a second end which is remote from the inlet for regeneration gas, and the or each heater element is located so as not to penetrate through the first end of the body of adsorbent.
Owner:AIR PROD & CHEM INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products