Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

57 results about "Linear dispersion" patented technology

Linear dispersion in wireless communication channels distorts the transmitted signal in both time and frequency. This is accounted for by a (t, f) scattering function. In wireless communication systems with CDMA protocol, fading and multiaccess interference can be dealt with using ( t, f) processing.

Optical fiber based on wireless scheme for wideband multimedia access

A Fiber-wireless uplink consists of a wireless channel followed by a radio-over-fiber (ROF) link. Typically, nonlinear distortion of the ROF link is the major concern when the radio frequency is only a few GHz. This especially severe in the uplink, because of the multipath fading of the wireless channel. A Hammerstein type decision feedback equalizer is described for the fiber wireless uplink, that compensates for nonlinear distortion of the ROF link as well as linear dispersion of the wireless channel. Since the linear and nonlinear parts of the receiver are separated, tracking the fast changing wireless channel is virtually independent of compensating for the relatively static nonlinearity. Analytical results show that the receiver provides excellent compensation with notably less complexity.
Owner:TELECOMM RES LAB

System and method employing linear dispersion over space, time and frequency

Systems and methods for performing space time coding are provided. Two vectormatrix encoding operations are performed in sequence to produce a three dimensional result containing a respective symbol for each of a plurality of frequencies, for each of a plurality of transmit durations, and for each of a plurality of transmitter outputs. The two vectormatrix encoding operations may be for encoding in a) time-space dimensions and b) time-frequency dimensions sequentially or vice versa.
Owner:QUEENS UNIV OF KINGSTON

Hyper-spectral compression imaging method and system thereof

The invention discloses a hyper-spectral compression imaging method and a system thereof. The method comprises the following steps: carrying out first dispersion after imaging and collimation of an object; focusing an optical signal after dispersion and carrying out space intensity modulation; focusing the modulated optical signal again and carrying out second dispersion; focusing the optical signal after second dispersion, carrying out detection by a detector, carrying out acquisition by a computer, carrying out data resolution, and recovering a three-dimensional data cube of a shot object; wherein the first dispersion and the second dispersion are linear dispersion which are realized by employing a Prism-Grating-Prism device, dispersion directions of the first dispersion and the second dispersion are opposite, and the space intensity modulation is realized by employing a spatial light modulator. According to the invention, data amount is reduced, realization of data resolution of high fidelity is facilitated, and miniaturization design and imaging diversification of an imaging system are facilitated.
Owner:SUZHOU UNIV

Assembly and method for wavelength calibration in an echelle spectrometer

A spectrometer assembly (10) comprises a light source (11) with a continuous spectrum, a pre-monochromator (2) for generating a spectrum with a relatively small linear dispersion from which a spectral portion is selectable, the spectral bandwidth of such spectral portion being smaller than or equal to the bandwidth of the free spectral range of such order in the echelle spectrum wherein the centre wavelength of the selected spectral interval is measurable with maximum blaze efficiency, an echelle spectrometer (4) with means for wavelength calibration, an entrance slit (21) at the pre-monochromator (2), an intermediate slit assembly (50) with an intermediate slit (3) and a spatially resolving light detector (5) in the exit plane of the spectrometer for the detection of wavelength spectra. The assembly is characterised in that the width of the intermediate slit (3) is larger than the monochromatic image of the entrance slit generated by the pre-monochromator at the location of the intermediate slit, and means for calibrating the pre-monochromator are provided, which are adapted to calibrate the light of the light source with a continuous spectrum on the detector to a reference position.
Owner:LEIBNIZ - INSTITUT FUER ANALYTISCHE WISSENSCHAFTEN ISAS +1

Method for automatically forwardly/reversely tapering fiber

The invention provides a method for automatically forwardly / reversely tapering a fiber. According to the method, the external envelope of a flame in a fiber heating area in the tapering process is calculated according to the shape of a target fiber, and reciprocating of a flame front is controlled, so that a tapered fiber conforming to a target shape is prepared. Post-treatment of a fiber waveguide is realized by constant-speed reciprocating heating of the dotted flame and simultaneous stretch or compression of two ends of the fiber, and the movement speed of the dotted flame front and the stretch / compression speed of the two ends of the fiber can be optionally adjusted in the forward / reverse tapering process. The linear dispersion characteristic and the nonlinear Kerr characteristic of the tapered fiber can be greatly changed. The tapered fiber can be efficiently and laterally coupled with an external environment. The properties are quite widely applied to fiber optics and a plurality of fields including fiber sensing, optical frequency conversion, super-continuum broadening, quantum optics and the like.
Owner:PEKING UNIV

Rapid K-space linear frequency sweep laser source

InactiveCN102969651AQuick scanAchieve wavenumber linear effectLaser output parameters controlLinear dispersionGrating
The invention discloses a rapid K-space linear frequency sweep laser source. The laser source comprises a semiconductor optical amplifier, two polarization controllers, a dispersion control delay line, a circulator, a tuned filter and an output optical fiber coupler, wherein radiation light emitted from the semiconductor optical amplifier is transmitted to the dispersion control delay line through a polarization controller I; the middle port of the circulator is connected to the tuned filer through a first port of the circulator; returned signals are connected to the optical fiber coupler after passing through a third port of the circulator; one path of the optical fiber coupler outputs frequency sweep laser through a 60% port, and the other path of the optical fiber coupler is connected to the polarization controller II and then returns to a ring laser oscillation cavity; the tuned filter mainly comprises two dispersion elements, namely a grating and a prism, and a rotary polygonal mirror; and the linearity of a wave number space is achieved through combination of linear dispersion of the grating and non-linear dispersion of the prism as well as selection on the angles and directions of the prism. The rapid K-space linear frequency sweep laser source can be used for outputting the rapid K-space linear frequency sweep laser, and can obtain the signals of the linearity of the wave number space directly without calibration when being applied to an OCT (Optical Coherence Tomography) imaging system.
Owner:UNIV OF SHANGHAI FOR SCI & TECH

Filter spectrometer with adjustable linear dispersion rate

The invention relates to a filter spectrometer with adjustable linear dispersion rate. Light beams emitted by a light source enter a converging lens. The converging lens converges the light beams to aslit in the focus position of a collimating lens. The light beams going out of the slit are changed into parallel light after passing through the collimating lens, and the parallel light is incidenton the surface of a linear gradient filter. A light-splitting spectrum is detected by a linear array CCD detector according to spectrum information obtained through light splitting by the linear gradient filter, and is transmitted to a computer for processing. The linear array CCD detector is fixed on a rotary adjustable bracket. With the direction in which the resonant cavity layer of the filterchanges thickness fastest as a reference direction, the linear array CCD detector is rotated in such a way that there is an included angle between the length direction of the detector and the reference direction. Then, the transmitted light of the filter is detected, and the dispersion rate can be changed. The linear array CCD detector can move in a two-dimensional direction to measure light within different wavelength ranges. The filter spectrometer has the advantages of simple structure, convenience of use and adjustable linear dispersion rate.
Owner:UNIV OF SHANGHAI FOR SCI & TECH

Method for broadband radio-frequency signal correlation detection based on time-spectrum convolution principle

ActiveCN103326795AAvoid offline processingAvoid immediate measurementsTransmission monitoringFrequency spectrumLinear dispersion
The invention relates to a method for broadband radio-frequency signal correlation detection based on the time-spectrum convolution principle. The method is used for filtering and matching broadband radio signals and comprises the following steps that step 1, a laser device is used for generating a multi-wavelength laser light source; step 2, the spectrum forming technology is used by generated lasers through an optical filter so that an amplitude-frequency response envelope conjugated with a detected broadband radio-frequency signal time domain waveform can be generated; step 3, the received detected broadband radio-frequency signals are loaded on the lasers after spectrum forming through an electro-optic strength modulator; step 4, the modulated optical signals are introduced to chromatic dispersion delay through a linear chromatic dispersion component; step 5, the optical signals are connected to a photoelectric detector for photovoltaic conversion and an output signal is a detected electric pulse signal after a correlation operation. The method for broadband radio-frequency signal correlation detection based on the time-spectrum convolution principle can effectively avoid offline processing of data and achieve immediate measurement of the broadband radio-frequency signals.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI

Polarization and hyper-spectral compression imaging method and system

The invention discloses a polarization and hyper-spectral compression imaging method and system. The polarization and hyper-spectral compression imaging system is provided with an objective lens, a polarization modulator, a collimating lens, a first linear dispersion device, a first convex lens, a spatial modulation mask plate, a second convex lens, a second linear dispersion device, a lens and adetector in sequence along the direction of light transmission, wherein the objective lens is used for imaging a target on the polarization modulator. The polarization and hyper-spectral compression imaging method comprises the following steps: imaging the target on the polarization modulator, collimating the emergent light, carrying out first dispersion on the collimated emergent light, carryingout spatial modulation on the dispersed light signal, carrying out second dispersion, projecting the light on the detector, collecting data by using a computer, completing data calculation, and restoring four-dimensional data information of the target. The invention realizes the hyper-spectral instantaneous compression imaging of three-dimensional data cubes in a certain vision field under the control of polarization modulation, greatly reduces the quantity of data received by the detector, improves the signal-to-noise ratio of the system and is especially beneficial to the target imaging of weak light intensity and strong dispersion.
Owner:SUZHOU UNIV

Large axial chromatic aberration linear dispersion object lens

ActiveCN106405803AIt has the effect of collimating first and then focusingSmall sizeUsing optical meansOptical elementsLinear dispersionOptical axis
The embodiment of the invention provides a large axial chromatic aberration linear dispersion object lens. The object lens comprises a collimating lens group with positive focusing luminosity and a focusing lens group with positive focusing luminosity, the collimating lens group and the focusing lens group are arranged along the optical axis in order between a light source pinhole and measured object, the collimating lens group is close to the light source pinhole, and the focusing lens group is close to the measured object. The object lens system comprehensively considers the balance of the linearity of the dispersion object lens and the system aberration correction, and the collimating lens group and the focusing lens group are both positive lens groups and have the effect of collimation first and then focusing. The collimating lens group includes an aspheric lens to allow the ratio of the axial direction dispersion range of the linear dispersion object lens and the system focal length to be larger than 0.2 so as to entirely reduce the size of the object lens, reduce the processing difficulty and allow the object lens to have excellent linearity; and moreover, an additional arrival aperture diaphragm can limit the incident ray angle, prevent the adjustment process from being difficult because the structure of the dispersion object lens is complicated, and improve the processing precision.
Owner:NANJING INST OF ADVANCED LASER TECH

Space time collaboration diversity method in OFDMA system

The invention discloses a space-time cooperation diversity method of an OFDMA system, which mainly solves the problem of low performance of the system. The method comprises the following steps: 1. the number of terminals participating in cooperation is determined and a linear dispersion code used in cooperation is appointed; 2. subcarriers in the first stage and the second stage are allocated to every terminal; 3. in the first stage of cooperation, LDC code words are sent to other terminals and a receiving terminal by a terminal n on the allocated subcarriers; 4. the LDC code word information sent by the terminal n is received by a terminal m and whether the receiving is correct is checked, if correctly receiving the information of the terminal n, the terminal m reports system to participate in the cooperation, and otherwise, the terminal m does not participate in the cooperation; 5. the terminals participating in the cooperation and LDC code word line components sent by every terminal are determined; 6. in the second period of cooperation, respective cooperation information is sent by the terminals participating in the cooperation to the receiving terminal; and 7. the received information in the first stage and the received information in the second stage are merged and then decoded by the receiving terminal. The invention has the advantages of low bit error rate and is used for cooperation communication in a wireless network.
Owner:XIDIAN UNIV

Method and apparatus for spatial-shift wavelength multiplexing in communication systems

InactiveUS6763163B1Efficient spatial shiftingProcess economyCoupling light guidesMultiplexingLinear dispersion
Methods and apparatus for spatially-shifting and multiplexing optical signals for transmission in a wavelength division multiplexed or dense wavelength division multiplexed optical communication system linearly disperse the optical signals and then spatially, laterally shift the signals. The spatially shifted, dispersed signals are thereafter re-imaged to remove the linear dispersion so that the spatially shifted signals can then be transmitted through the optical communication system. The spatially-shifted, multiplexed signals have a flat passband with sharp transition points so that the transmitted signals are routed through the optical communication system with low loss and high integrity.
Owner:LUCENT TECH INC

Double-grating spectrometer system capable of detecting three-phase-state water Raman spectral signals simultaneously

The invention discloses a double-grating spectrometer system capable of detecting three-phase-state water Raman spectral signals simultaneously. The system comprises a signal feed-in unit, an optical dispersion unit and a signal detection unit. The signal feed-in unit uses a fiber in the core diameter of 0.6mm and numerical aperture of 0.12 to feed conducted signal light into the optical dispersion unit; the optical dispersion unit comprises two cascaded grating dispersion systems of quasi-Littrow structural layout, can transmit and disperse passband signal light in the range 393.0-424.0nm in the focal plane efficiently in the linear dispersion rate of 1.0mm nm <-1>, and generates inhibition superior to 6 magnitude orders for outband light near 354.8nm; and the signal detection unit can distinguish and record the passabnd signal light after dispersion in the spectral precision of 0.8nm. In 354.8nm UV laser radiation, vibration-rotation Raman spectral regions of gas-sate, liquid-state and solid-state water correspond to the ranges of 395-409nm, 396-410nm and 401-418nm respectively; the passband spectral range covers the vibration-rotation Raman spectral regions of the three-phase-state water, the three-phase-state water Raman spectral signals are detected simultaneously, and substantial inhibition is generated for optical signals near 354.8nm.
Owner:WUHAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products