Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1248 results about "Hyperspectral imaging" patented technology

Hyperspectral imaging, like other spectral imaging, collects and processes information from across the electromagnetic spectrum. The goal of hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, with the purpose of finding objects, identifying materials, or detecting processes. There are three general branches of spectral imagers. There are push broom scanners and the related whisk broom scanners (spatial scanning), which read images over time, band sequential scanners (spectral scanning), which acquire images of an area at different wavelengths, and snapshot hyperspectral imaging, which uses a staring array to generate an image in an instant.

Method and apparatus for use in camera and systems employing same

There are many inventions described herein. Some aspects are directed to methods and / or apparatus to provide relative movement between optics, or portion(s) thereof, and sensors, or portion(s) thereof, in a digital camera. The relative movement may be in any of various directions. In some aspects, relative movement between an optics portion, or portion(s) thereof, and a sensor portion, or portion(s) thereof, are used in providing any of various features and / or in the various applications disclosed herein, including, for example, but not limited to, increasing resolution, optical and electronic zoom, image stabilization, channel alignment, channel-channel alignment, image alignment, lens alignment, masking, image discrimination, range finding, 3D imaging, auto focus, mechanical shutter, mechanical iris, multi and hyperspectral imaging, and / or combinations thereof. In some aspects, movement is provided by actuators, for example, but not limited to MEMS actuators, and by applying appropriate control signal thereto.
Owner:INTELLECTUAL VENTURES II

Digital light processing hyperspectral imaging apparatus

A hyperspectral imaging system having an optical path. The system including an illumination source adapted to output a light beam, the light beam illuminating a target, a dispersing element arranged in the optical path and adapted to separate the light beam into a plurality of wavelengths, a digital micromirror array adapted to tune the plurality of wavelengths into a spectrum, an optical device having a detector and adapted to collect the spectrum reflected from the target and arranged in the optical path and a processor operatively connected to and adapted to control at least one of: the illumination source; the dispersing element; the digital micromirror array; the optical device; and, the detector, the processor further adapted to output a hyperspectral image of the target. The dispersing element is arranged between the illumination source and the digital micromirror array, the digital micromirror array is arranged to transmit the spectrum to the target and the optical device is arranged in the optical path after the target.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

Hyperspectral/multispectral imaging in determination, assessment and monitoring of systemic physiology and shock

ActiveUS20070024946A1Reduce and present informationHigh indexRadiation pyrometryDiagnostics using lightWhole bodyBurn shock
The present invention provides a hyperspectral imaging system which demonstrates changes in tissue oxygen delivery, extraction and saturation during shock and resuscitation including an imaging apparatus for performing real-time or near real-time assessment and monitoring of shock, including hemorrhagic, hypovolemic, cardiogenic, neurogenic, septic or burn shock. The information provided by the hyperspectral measurement can deliver physiologic measurements that support early detection of shock and also provide information about likely outcomes.
Owner:HYPERMED IMAGING

Medical hyperspectral imaging for evaluation of tissue and tumor

Apparatus and methods for hyperspectral imaging analysis that assists in real and near-real time assessment of biological tissue condition, viability, and type, and monitoring the above over time. Embodiments of the invention are particularly useful in surgery, clinical procedures, tissue assessment, diagnostic procedures, health monitoring, and medical evaluations, especially in the detection and treatment of cancer.
Owner:HYPERMED IMAGING

Hyperspectral imaging systems, units, and methods

InactiveUS20150044098A1Superior spectral resolutionImprove data acquisition speedTelevision system detailsRadiation pyrometrySpectral bandsImaging data
A hyperspectral imaging system, including: at least one hyperspectral imaging unit, including: at least one lens configured to direct light scattered by, reflected by, or transmitted through a target medium to at least one hyperspectral filter arrangement configured to separate the light into discrete spectral bands; an imaging sensor to: receive the discrete spectral bands from the at least one hyperspectral filter arrangement; detect light by a plurality of pixels for each of the spectral bands; and generate electrical signals based at least in part on at least a portion of the light; and at least one image processor in communication with the at least one imaging sensor and configured to generate hyperspectral image data associated with the target medium; and at least one processor configured to determine biological data based at least partially on at least a portion of the hyperspectral image data.
Owner:SCANADU

Multispectral or hyperspectral imaging system and method for tactical reconnaissance

A two-dimensional focal plane array (FPA) is divided into sub-arrays of rows and columns of pixels, each sub-array being responsive to light energy from a target object which has been separated by a spectral filter or other spectrum dividing element into a predetermined number of spectral bands. There is preferably one sub-array on the FPA for each predetermined spectral band. Each sub-array has its own read out channel to allow parallel and simultaneous readout of all sub-arrays of the array. The scene is scanned onto the array for simultaneous imaging of the terrain in many spectral bands. Time Delay and Integrate (TDI) techniques are used as a clocking mechanism within the sub-arrays to increase the signal to noise ratio (SNR) of the detected image. Additionally, the TDI length (i.e., number of rows of integration during the exposure) within each sub-array is adjustable to optimize and normalize the response of the photosensitive substrate to each spectral band. The array provides for parallel and simultaneous readout of each sub-array to increase the collection rate of the spectral imagery. All of these features serve to provide a substantial improvement in the area coverage of a hyperspectral imaging system while at the same time increasing the SNR of the detected spectral image.
Owner:THE BF GOODRICH CO

System for Multi- and Hyperspectral Imaging

The present invention relates to the production of instantaneous or non-instantaneous multi-band images, to be transformed into multi- or hyperspectral images, comprising light collecting means (11), an image sensor (12) with at least one two dimensional sensor array (121), and an instantaneous colour separating means (123), positioned before the image sensor array (121) in the optical path (OP) of the arrangement (1), and first uniform spectral filters (13) in the optical path (OP), with the purpose of restricting imaging to certain parts of the electromagnetic spectrum. The present invention specifically teaches that a filter unit (FU) comprising colour or spectral filter mosaics and / or uniform colour or spectral filters mounted on filter wheels (114) or displayed by transmissive displays (115), is either permanently or interchangeably positioned before the colour separating means (123) in the optical path (OP) in, or close to, converged light (B). Each colour or spectral filter mosaic consists of a multitude of homogeneous filtering regions. The transmission curves (TC) of the filtering regions of a colour or spectral filter mosaic can be partly overlapping, in addition to overlap between these transmission curves and those belonging to the filtering regions of the colour separating means (123). The transmission curves (TC) of the colour or spectral filter mosaics and the colour separating means (123) are suitably spread out in the intervals of a spectrum to be studied. The combination of the colour separating means (123) and the spectral or colour or spectral filter mosaics produces different sets of linearly independent transmission curves (TC). The multiple-filter image captured by the image sensor (12) is demosaicked by identifying and segmenting the image regions that are affected by the regions of the multiple filter mosaic, and after an optional interpolation step, a multi-band image is obtained. The resulting multi-band image is transformed into a multi- or hyperspectral image.
Owner:RP VENTURES TECH OFFICE

Digital light processing hyperspectral imaging apparatus

A hyperspectral imaging system having an optical path. The system including an illumination source adapted to output a light beam, the light beam illuminating a target, a dispersing element arranged in the optical path and adapted to separate the light beam into a plurality of wavelengths, a digital micromirror array adapted to tune the plurality of wavelengths into a spectrum, an optical device having a detector and adapted to collect the spectrum reflected from the target and arranged in the optical path and a processor operatively connected to and adapted to control at least one of: the illumination source; the dispersing element; the digital micromirror array; the optical device; and, the detector, the processor further adapted to output a hyperspectral image of the target. The dispersing element is arranged between the illumination source and the digital micromirror array, the digital micromirror array is arranged to transmit the spectrum to the target and the optical device is arranged in the optical path after the target.
Owner:ZUZAK KAREL J +4

Hyperspectral remote sensing systems and methods using covariance equalization

A method and apparatus for detecting a target or targets in a surrounding background locale based on target signatures obtained by a hyperspectral imaging sensor used the hyperspectral imaging sensor to collect raw target signature data and background locale data during a first data collection mission. The data is processed to generate a database including a plurality of target signatures and background data relating to the background locale. The hyperspectral imaging sensor is later used to collect further background data during a further, current data collecting mission so as to provide continuously updated background data, in real time. A covariance equalization algorithm is implemented with respect to the background data contained in the database and the updated background data collected during the current mission to effect transformation of each target signature of the database into a transformed target signature. A detection algorithm which employs the resultant transformed target signature is used to produce detection information related to the target or targets.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

Forensic hyperspectral apparatus and method

This invention relates to portable imaging devices, such as hyperspectral imaging devices, useful for forensic and other analysis, and methods for using these devices. Devices of the present invention provide images and patterned data arrays representing images in multiple discrete spectra that can then be summed or processed to allow for detection of patterns or anomalies in the data collected.
Owner:HYPERMED

Device, system and methods for assessing tissue structures, pathology, and healing

Disclosed herein are portable handheld devices, systems, and methods for the evaluation of tissue pathology and the evaluation and / or monitoring of tissue regeneration. The handheld devices and systems perform laser speckle and hyperspectral imaging to assess tissue pathology and tissue regeneration. The device and system of the disclosure may also perform 3D surface reconstruction.
Owner:MUNOZ LUIS DANIEL

Multispectral or hyperspectral imaging system and method for tactical reconnaissance

A two-dimensional focal plane array (FPA) is divided into sub-arrays of rows and columns of pixels, each sub-array being responsive to light energy from a target object which has been separated by a spectral filter or other spectrum dividing element into a predetermined number of spectral bands. There is preferably one sub-array on the FPA for each predetermined spectral band. Each sub-array has its own read out channel to allow parallel and simultaneous readout of all sub-arrays of the array. The scene is scanned onto the array for simultaneous imaging of the terrain in many spectral bands. Time Delay and Integrate (TDI) techniques are used as a clocking mechanism within the sub-arrays to increase the signal to noise ratio (SNR) of the detected image. Additionally, the TDI length (i.e., number of rows of integration during the exposure) within each sub-array is adjustable to optimize and normalize the response of the photosensitive substrate to each spectral band. The array provides for parallel and simultaneous readout of each sub-array to increase the collection rate of the spectral imagery. All of these features serve to provide a substantial improvement in the area coverage of a hyperspectral imaging system while at the same time increasing the SNR of the detected spectral image.
Owner:THE BF GOODRICH CO

High-speed event detection using a compressive-sensing hyperspectral-imaging architecture

A compressive imaging system and method for quickly detecting spectrally and spatially localized events (such as explosions or gun discharges) occurring within the field of view. An incident light stream is modulated with a temporal sequence of spatial patterns. The wavelength components in the modulated light stream are spatially separated, e.g., using a diffractive element. An array of photodetectors is used to convert subsets of the wavelength components into respective signals. An image representing the field of view may be reconstructed based on samples from some or all the signals. A selected subset of the signals are monitored to detect event occurrences, e.g., by detecting sudden changes in intensity. When the event is detected, sample data from the selected subset of signals may be analyzed to determine the event location within the field of view. The event location may be highlighted in an image being generated by the imaging system.
Owner:INVIEW TECH CORP

Sparse-spectrum-dictionary hyperspectral image reconstruction method by using compressed sensing

The invention relates to a sparse-spectrum-dictionary hyperspectral image reconstruction method by using compressed sensing, belongs to the technical field of remote sensing, and aims to solve the problems of large data amount, complex system and high cost in a current hyperspectral imaging system. The method is based on a current ground-object spectrum library, and comprises the following steps: selecting curves of typical spectrums to form a sampling library in a classified manner, adopting related algorithms in a signal sparse decomposition field to train the sampling library to obtain a sparse dictionary, combining a compressed measured value and a random measurement matrix to perform high-spectrum reconstruction, and adjusting related parameters of the algorithm according to a reconstruction effect till to be the best. The sparse dictionary obtained by the method has a better sparsification effect on ground-object spectrums; the precision of spectrum reconstruction is higher; and unlike decomposition and reconstruction of a conventional signal under the sparse dictionary, the method does not need priori information of a target, and has a wide application range.
Owner:ACAD OF OPTO ELECTRONICS CHINESE ACAD OF SCI

System and method for analyzing material properties using hyperspectral imaging

Systems and methods are provided for analyzing material properties of an object using hyperspectral imaging. An exemplary method includes obtaining a hyperspectral image of an object; analyzing the hyperspectral image according to an algorithm; and correlating data obtained from the analysis with material properties of the object.
Owner:SAMAL ASHOK KUMAR +1

Hyperspectral remote sensing image small target detection method based on spectrum saliency

The invention discloses a hyperspectral remote sensing image small target detection method based on spectrum saliency and belongs to the field of hyperspectral remote sensing images. When the method is used for target detection, local saliency is calculated with an improved Itti model by means of spectrum information and spatial information extracted from a hyperspectral image, and a local saliency map is constructed; then global saliency is calculated with an improved evolutionary programming method, and a global saliency map is constructed; finally, the local saliency map and the global saliency map are combined in a normalized mode to obtain an overall vision saliency map which is taken as the final target detection result. According to the method, a saliency model suitable for the hyperspectral image is established according to the spectrum saliency, image interested target detection is achieved based on comprehensive analysis of the spectral signature and spatial signature of the hyperspectral image, main contents of the image are highlighted, and image processing and analyzing complexity is reduced.
Owner:BEIJING UNIV OF TECH

Environment-controllable hyperspectral image detecting device for crop nutrition and moisture

The invention relates to nutrient diagnosis of crops, in particular to an environment-controllable hyperspectral image detecting device for crop nutrition and moisture. The device comprises a hyperspectral imaging system and a light box system. The hyperspectral imaging system can be used for extracting and analyzing the visual image features and the reflection intensity distribution features of the crop nutrition and moisture by acquiring crop visible light-near infrared hyperspectral image data cubes. The light box system can be used for presetting and regulating standard value of detection environment parameters such as illumination, temperature, humidity and the like, providing the stable detection environment for the hyperspectral detection of the crop nutrition and moisture, and meanwhile, studying the hyperspectral image features of the crop nutrition and moisture under different environmental conditions. By optimizing the visible light-near infrared hyperspectral image features and combining environment monitoring information, error influences caused by variations of environmental factors such as light intensity and the like can be effectively reduced so as to realize the rapid detection of the crop nutrition and moisture information.
Owner:JIANGSU UNIV

Hyperspectral retinal imager

An ophthalmic instrument (for obtaining high resolution, wide field of area hyperspectral retinal images for various sized eyes) includes a fundus retinal imager, (which includes optics for illuminating and imaging the retina of the eye); apparatus for generating a real time image of the area being imaged and the location of the hyperspectral region of interest; a high efficiency spatially modulated common path Fourier transform hyperspectral imager, a high resolution detector optically coupled to the hyperspectral and fundus imager optics; and a computer (which is connected to the real time scene imager, the illumination source, and the high resolution camera) including an algorithm for recovery and calibration of the hyperspectral images.
Owner:KESTREL CORP

Hyper-spectral estimation method of total nitrogen content of rice leaves and estimation model constructing method

An embodiment of the invention discloses a hyper-spectral estimation model constructing method of total nitrogen content of rice leaves. The method comprises steps as follows: multiple experimental plots are selected, and multiple sampling points are selected in each experimental plot; canopy spectral measurement is performed at the critical growing stage of rice; multiple sampling spectrums are recorded at each sampling point, and an average value is taken as a spectral measurement value of the sampling point; a hyper-spectral image of each experimental plot is acquired by an airborne imaging spectrometer; multiple function leaves at different parts are collected at each sampling point, and the total nitrogen content of the rice leaves is measured; the hyper-spectral estimation model of the total nitrogen content of the rice leaves is constructed with the adoption of spectral indexes or a partial least-squares regression method. The embodiment of the invention further discloses a hyper-spectral estimation method of the total nitrogen content of the rice leaves. The total nitrogen content of the rice leaves is estimated according to the model constructed with the method. The scientific and technical basis can be provided for space inversion of the nitrogen content of regional-scale rice and efficient implementation of precision agriculture.
Owner:NORTHWEST A & F UNIV

Method for classifying a pixel of a hyperspectral image in a remote sensing application

What is disclosed is a novel system and method for simultaneous spectral decomposition suitable for image object identification and categorization for scenes and objects under analysis. The present system captures different spectral planes simultaneously using a Fabry-Perot multi-filter grid each tuned to a specific wavelength. A method for classifying pixels in the captured image is provided. The present system and method finds its uses in a wide array of applications such as, for example, occupancy detection in a transportation management system and in medical imaging and diagnosis for healthcare management. The teachings hereof further find their uses in other applications where there is a need to capture a two dimensional view of a scene and decompose the scene into its spectral bands such that objects in the image can be appropriately identified.
Owner:CONDUENT BUSINESS SERVICES LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products