Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

510 results about "Common path" patented technology

Systems and methods for phase measurements

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and / or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Systems and methods for phase measurements

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and / or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Systems and methods for phase measurements

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and / or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

MEMS scanner with dual magnetic and capacitive drive

A MEMS scanning device includes more than one type of actuation. In one approach capacitive and magnetic drives combine to move a portion of the device along a common path. In one such structure, the capacitive drive comes from interleaved combs. In another approach, a comb drive combines with a pair of planar electrodes to produce rotation of a central body relative to a substrate. In an optical scanning application, the central body is a mirror. In a biaxial structure, a gimbal ring carries the central body. The gimbal ring may be driven by more than one type of actuation to produce motion about an axis orthogonal to that of the central body. In another aspect, a MEMS scanning device is constructed with a reduced footprint.
Owner:MICROVISION

Devices and arrangements for performing coherence range imaging using a common path interferometer

ActiveUS20060109478A1Path length mismatchDispersion mismatchInterferometersMaterial analysis by optical meansElectromagnetic radiationLength wave
Devices, arrangements and apparatus adapted to propagate at least one electro-magnetic radiation are provided. In particular, a probe housing, a sample arm section and a reference arm section can be included. For example, the sample arm section can be at least partially situated within the probe housing, and configured to propagate a first portion of the electro-magnetic radiation that is intended to be forwarded to a sample. The reference arm section can be at least partially situated within the probe housing, and configured to propagate a second portion of the electro-magnetic radiation that is intended to be forwarded to a reference. In addition or as an alternative, an interferometer may be situated within the probe housing. The first and second portions may travel along substantially the same paths, and the electro-magnetic radiation can be generated by a narrowband light source that has a tunable center wavelength. Further, the first and second portions may be at least partially transmitted via at least one optical fiber. A splitting arrangement may be provided which splits the electro-magnetic radiation into the first and second portions, and positioned closer to the sample than to the source of the electro-magnetic radiation, and the first and second portions may be adapted to propagate in different directions. An apparatus may be provided that is configured to control an optical path length of the second portion.
Owner:THE GENERAL HOSPITAL CORP

Common path frequency domain optical coherence reflectometry/tomography device

InactiveUS7428053B2Relieving the requirements to the spectral resolutionEliminate the problemInterferometersMaterial analysis by optical meansOptical radiationData acquisition
Common path frequency domain optical coherence reflectometry / tomography devices include a portion of optical fiber with predetermined optical properties adapted for producing two eigen modes of the optical radiation propagating therethrough with a predetermined optical path length difference. The two replicas of the optical radiation outgoing from the portion of the optical fiber are then delivered to an associated sample by an optical fiber probe. The tip of the optical fiber serves as a reference reflector and also serves as a combining element that produces a combination optical radiation by combining an optical radiation returning from the associated sample with a reference optical radiation reflected from the reference reflector. The topology of the devices allows for registering a cross-polarized or a parallel-polarized component of the optical radiation reflected or backscattered from the associated sample. Having the optical path length difference for the two eigen modes of the optical radiation (which is an equivalent of an interferometer offset in previously known devices) differ from the reference offset in the devices of the present invention allows for relieving the requirements to the spectral resolution of the FD OCT engine and / or data acquisition and processing system, and substantially eliminates depth ambiguity problems.
Owner:IMALUX CORP

Article identification

The present invention relates to improvements in the design and operation of an article dispensing apparatus used in conjunction with an article identification device, and is particularly useful in the environment of a vending machine. In one embodiment, the article dispensing apparatus comprises a storage volume for storing articles to be dispensed; an article extracting device including a free end for selectively grasping to and extracting an article from the storage volume; and a user interface and control apparatus for allowing a user of the dispensing apparatus to initiate an article dispensing operation, and to cause controlled movement of the article extracting device so that a selected article is extracted from the article storage area and moves along a common path to a point within the dispensing apparatus that is associated with a dispensing area of the dispensing apparatus. An article identification device, mounted at a point within the dispensing apparatus that is near the common path, is operated so as to provide identification scanning of an article while the article is still being grasped by the article extracting device and while the article is still being moved by the article extracting device, as the article moves along the common path during the dispensing operation.
Owner:CHIRNOMAS MUNROE

High efficiency LED optical engine for a digital light processing (DLP) projector and method of forming same

An optical light engine (100) includes one or more light-emitting diode (LED) panels (101, 102, 103) that are combined into a common path and directly imaged onto panel device to provide a source of light to a microdisplay panel (109). Preferably, the LED panel (101, 102, 103) is shaped such that the aspect ratio of light propagating the LED panel is substantially equal to the light received at the microdisplay panel (109). An aspect ratio of 4:3 or 16:9 is typically selected in view of the sizes of the LED panels used in the light engine.
Owner:JABIL CIRCUIT INC

Two-dimensional photoelectric auto-collimation method and device for polarized light pyramid target common-path compensation

The invention discloses a two-dimensional photoelectric auto-collimation method and device for polarized light pyramid target common-path compensation, belonging to the technical field of precision instrument manufacture and precision measurement. According to the invention, high-precision photoelectric autocollimation angle measurement is realized for solving the defects in the existing method and device. The method comprises: a common-path shift quantity monitoring separating device based on a pyramid combined target can be used for curing a polarizing light splitter, a pyramid reflector and a measurement reflector to form the pyramid combined target, and separating a reference light beam which has a feature identical to that of a measurement light beam and is in common-path transmission with the measurement light beam while obtaining a two-dimensional angle variation by using the linear polarization feature of the laser; a controller is used for controlling a two-dimensional light beam deflection device in real time according to the shift quantity reflected by the reference light beam so as to inhibit the shift quantity coupled in the measurement light beam, thus the precision measurement on the two-dimensional angle variation is realized. The device for realizing the method comprises a two-dimensional photoelectric auto-collimation tube, the common-path shift quantity monitoring separating device based on the pyramid combined target, the controller and the two-dimensional light beam deflection device.
Owner:HARBIN INST OF TECH

Interferometric defect detection and classification

Systems and methods for using common-path interferometric imaging for defect detection and classification are described. An illumination source generates and directs coherent light toward the sample. An optical imaging system collects light reflected or transmitted from the sample including a scattered component and a specular component that is predominantly undiffracted by the sample. A variablephase controlling system is used to adjust the relative phase of the scattered component and the specular component so as to change the way they interfere at the image plane. The resultant signal is compared to a reference signal for the same location on the sample and a difference above threshold is considered to be a defect. The process is repeated multiple times each with a different relative phase shift and each defect location and the difference signals are stored in memory. This data is used to calculate an amplitude and phase for each defect.
Owner:焕・J・郑

Hyperspectral retinal imager

An ophthalmic instrument (for obtaining high resolution, wide field of area hyperspectral retinal images for various sized eyes) includes a fundus retinal imager, (which includes optics for illuminating and imaging the retina of the eye); apparatus for generating a real time image of the area being imaged and the location of the hyperspectral region of interest; a high efficiency spatially modulated common path Fourier transform hyperspectral imager, a high resolution detector optically coupled to the hyperspectral and fundus imager optics; and a computer (which is connected to the real time scene imager, the illumination source, and the high resolution camera) including an algorithm for recovery and calibration of the hyperspectral images.
Owner:KESTREL CORP

Multi-neural network control planning method for robot path in intelligent environment

The invention provides a multi-neural network control planning method for a robot path in an intelligent environment. The method comprises the steps that 1 a global map three-dimensional coordinate system is constructed for the carrying area of a carrier robot to acquire a walkable area coordinate in the global map three-dimensional coordinate system; 2 a training sample set is acquired; 3 the global static path planning model of the carrier robot is constructed; and 4 starting and ending coordinates in a transportation task are input into the global static path planning model based on a fuzzy neural network to acquire the corresponding optimal planning path for the carrier robot. According to the invention, the global static path planning model and a local dynamic obstacle avoidance planning model are separately established; the nonlinear fitting property of the neural network is used to find the global optimal solution quickly; and the problem of falling into a local optimum in common path planning is avoided.
Owner:CENT SOUTH UNIV

Color filters and sequencers using color selective light modulators

The present invention provides a high brightness color selective light modulator (CSLM) formed by a polarization modulator positioned between two retarder stacks. The modulator changes the apparent orientation of one retarder stack relative to the other so that, in a first switching state of the modulator the two retarder stacks cooperate in filtering the spectrum of input light, and in a second switching state the two retarder stacks complement each other, yielding a neutral transmission spectrum. Two or more CSLM stages can be used in series, each stage providing independent control of a primary color. One preferred embodiment eliminates internal polarizers between CSLM stages, thereby providing an additive common-path full-color display with only two neutral polarizers. Hybrid filters can be made using the CSLMs of this invention, in combination with other active or passive filters. The CSLMs of this invention can be used in many applications, particularly in the areas of recording and displaying color images. They can be arranged in a multi pixel array by pixelating the active elements, and can be implemented as color filter arrays, using patterned passive retarders rather than active polarization modulators.
Owner:REAID INC

Rotary Fourier transform interference imaging spectrometer

The invention discloses a rotary Fourier transform interference imaging spectrometer, which includes a front collimation objective, a cube corner reflector, a beamsplitter, a rear imaging objective, a detector and a control and processing module, aims to reduce the light energy loss of a target, and has the characteristics of high luminous flux and detection sensitivity. The traditional rectilinear motion scanning manner of a moving mirror is substituted by the rotary scanning manner of the beamsplitter or the cube corner reflector, so as to avoid series of technical difficulties brought by precise rectilinear scanning of the moving mirror; a lateral shear interferometer based on the Michelson interference principle is adopted, and the characteristic of common path is obtained, so that the interference effect cannot be influenced even if the beamsplitter slightly shakes during the rotation; a planemirror in the traditional Fourier transform imaging spectrometer is substituted by the cube corner reflector, so that the problem brought by the inclined planemirror is avoided; therefore, the stability, reliability and vibration and impact resistance of the instrument are improved, and the structure of the spectrometer is more compact.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Adaptive crosstalk rejection

Embodiments of the invention are directed to systems, methods and computer program products for reducing crosstalk between two systems or between parts of the same system. In some embodiments, a method includes transmitting, from a first signal source, a first input signal to a first amplifier associated with a first audio-listening channel. Additionally, the method includes measuring a signal level along a common path shared by the first audio-listening channel and the second audio-listening channel, wherein the common path includes at least some resistance. Additionally, the method includes determining a compensation signal to be injected into the second audio-listening channel based at least partially on the measured signal level. Additionally, the method includes injecting at least a part of the first input signal into the second audio-listening channel based at least partially on the determined compensation signal, thereby reducing a current level in the second audio-listening channel.
Owner:SONY CORP

Systems and methods for phase measurements

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and / or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Surface plasmon resonance microscope using common-path phase-shift interferometry

The present invention integrates the surface plasmon resonance and common-path phase-shift interferometry techniques to develop a microscope for measuring the two-dimensional spatial phase variation caused by biomolecular interactions on a sensing chip without the need for additional labeling. The common-path phase-shift interferometry technique has the advantage of long-term stability, even when subjected to external disturbances. Hence, the developed microscope meets the requirements of the real-time kinetic studies involved in biomolecular interaction analysis. The surface plasmon resonance microscope of the present invention using common-path phase-shift interferometry demonstrates a detection limit of 2×10−7 refractive index change, a long-term phase stability of 2.5×10−4π rms over four hours, and a spatial phase resolution of 10−3 π with a lateral resolution of 100 μm.
Owner:PHALANX BIOTECH GROUP

System and method for measuring phase

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and / or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Overlapping common-path interferometers for two-sided measurement

Two common-path interferometers share a measuring cavity for measuring opposite sides of opaque test parts. Interference patterns are formed between one side of the test parts and the reference surface of a first of the two interferometers, between the other side of the test parts and the reference surface of a second of the two interferometers, and between the first and second reference surfaces. The latter measurement between the reference surfaces of the two interferometers enables the measurements of the opposite sides of the test parts to be related to each other.
Owner:CORNING INC

Complex index refraction tomography with sub lambda/6-resolution

The present invention discloses a method to improve the image resolution of a microscope. This improvement is based on the mathematical processing of the complex field computed from the measurements with a microscope of the wave emitted or scattered by the specimen. This wave is, in a preferred embodiment, electromagnetic or optical for an optical microscope, but can be also of different kind like acoustical or matter waves. The disclosed invention makes use of the quantitative phase microscopy techniques known in the sate of the art or to be invented. In a preferred embodiment, the complex field provided by Digital Holographic Microscopy (DHM), but any kind of microscopy derived from quantitative phase microscopy: modified DIC, Shack-Hartmann wavefront analyzer or any analyzer derived from a similar principle, such as multi-level lateral shearing interferometers or common-path interferometers, or devices that convert stacks of intensity images (transport if intensity techniques: TIT) into quantitative phase image can be used, provided that they deliver a comprehensive measure of the complex scattered wavefield. The hereby-disclosed method delivers superresolution microscopic images of the specimen, i.e. images with a resolution beyond the Rayleigh limit of the microscope. It is shown that the limit of resolution with coherent illumination can be improved by a factor of 6 at least. It is taught that the gain in resolution arises from the mathematical digital processing of the phase as well as of the amplitude of the complex field scattered by the observed specimen. In a first embodiment, the invention teaches how the experimental observation of systematically occurring phase singularities in phase imaging of sub-Rayleigh distanced objects can be exploited to relate the locus of the phase singularities to the sub-Rayleigh distance of point sources, not resolved in usual diffraction limited microscopy. In a second, preferred embodiment, the disclosed method teaches how the image resolution is improved by complex deconvolution. Accessing the object's scattered complex field—containing the information coded in the phase—and deconvolving it with the reconstructed complex transfer function (CTF) is at the basis of the disclosed method. In a third, preferred embodiment, it is taught how the concept of “Synthetic Coherent Transfer Function” (SCTF), based on Debye scalar or Vector model includes experimental parameters of MO and how the experimental Amplitude Point Spread Functions (APSF) are used for the SCTF determination. It is also taught how to derive APSF from the measurement of the complex field scattered by a nanohole in a metallic film. In a fourth embodiment, the invention teaches how the limit of resolution can be extended to a limit of λ / 6 or smaller based angular scanning. In a fifth embodiment, the invention teaches how the presented method can generalized to a tomographic approach that ultimately results in super-resolved 3D refractive index reconstruction.
Owner:ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Common optical-path testing of high-numerical-aperture wavefronts

A polarizing point-diffraction plate is used to produce common-path test and reference wavefronts with mutually orthogonal polarizations from an input wavefront. The common-path test and reference wavefronts are collimated, phase shifted and interfered, and the resulting interferograms are imaged on a detector. The interference patterns are then processed using conventional algorithms to characterize the input light wavefront.
Owner:ONTO INNOVATION INC

Horn-loaded compression driver system

A horn-loaded compression driver or a loudspeaker has a phasing plug with multiple slots and a common annular chamber. The slots extend from an inlet side to the common annular chamber, which extends to an outlet side. Each slot has a path length extending to a common focal point in the common annular chamber. The common focal point has a common path length extending to the outlet side. The phasing plug provides an approximately flat acoustic wave front from the compression driver to the horn.
Owner:HARMAN INT IND INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products