Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

440 results about "Cellular component" patented technology

Cellular components are the complex biomolecules and structures of which cells, and thus living organisms, are composed. Cells are the structural and functional units of life. The smallest organisms are single cells, while the largest organisms are assemblages of trillions of cells. DNA is found in nearly all living cells; each cell carries chromosome(s) having a distinctive DNA sequence.

Methods of monitoring disease states and therapies using gene expression profiles

The present invention provides methods for monitoring disease states in a subject, as well as methods for monitoring the levels of effect of therapies upon a subject having one or more disease states. The methods involve: (i) measuring abundances of cellular constituents in a cell from a subject so that a diagnostic profile is obtained, (ii) measuring abundances of cellular constituents in a cell of one or more analogous subjects so that perturbation response profiles are obtained which correlate to a particular disease or therapy, and (iii) determining the interpolated perturbation response profile or profiles which best fit the diagnostic profile according to some objective measure. In other aspects, the invention also provides a computer system capable of performing the methods of the invention, data bases comprising perturbation response profiles for one or more diseases and / or therapies, and kits for determining levels of disease states and / or therapeutic effects according to the methods of the invention.
Owner:MICROSOFT TECH LICENSING LLC

Systems and methods for phase measurements

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and/or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Systems and methods for phase measurements

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and/or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Systems and methods for phase measurements

Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and / or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
Owner:MASSACHUSETTS INST OF TECH

Method for texturing surfaces of optical fiber sensors used for blood glucose monitoring

Disclosed is a method and the resulting product thereof comprising a solid light-conducting fiber with a point of attachment and having a textured surface site consisting a textured distal end prepared by being placed in a vacuum and then subjected to directed hyperthermal beams comprising oxygen ions or atoms. The textured distal end comprises cones or pillars that are spaced upon from each other by less than 1 micron and are extremely suitable to prevent cellular components of blood from entering the valleys between the cones or pillars so as to effectively separate the cellular components in the blood from interfering with optical sensing of the glucose concentration for diabetic patients.
Owner:UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR NAT AERONAUTICS & SPACE ADMINISTRATION

Multimodal silica-based nanoparticles

The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo. In order to target a specific cell type, the nanoparticle may further be conjugated to a ligand, which is capable of binding to a cellular component associated with the specific cell type, such as a tumor marker. In one embodiment, a therapeutic agent may be attached to the nanoparticle. To permit the nanoparticle to be detectable by not only optical fluorescence imaging, but also other imaging techniques, such as positron emission tomography (PET), single photon emission computed tomography (SPECT), computerized tomography (CT), bioluminescence imaging, and magnetic resonance imaging (MRI), radionuclides/radiometals or paramagnetic ions may be conjugated to the nanoparticle.
Owner:SLOAN KETTERING INST FOR CANCER RES +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products