Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

380 results about "Disease status" patented technology

Disease status criteria are generally based upon clinical assessment confirming ongoing presence or absence of disease.

Method for optical measurements of tissue to determine disease state or concentration of an analyte

A method for collecting optical data at two morphologically similar, substantially non-overlapping, and preferably adjacent, areas on the surface of a tissue, while the temperature in each area is being maintained or modulated according to a temperature program. The optical data obtained are inserted into a mathematical relationship, e.g., an algorithm, that can be used to predict a disease state (such as the diabetes mellitus disease state) or the concentration of an analyte for indicating a physical condition (such as blood glucose level). This invention can be used to differentiate between disease status, such as, for example, diabetic and non-diabetic. The method involves the generation of a calibration (or training) set that utilizes the relationship between optical signals emanating from the skin under different thermal stimuli and disease status, e.g., diabetic status, established clinically. This calibration set can be used to predict the disease state of other subjects. Structural changes, as well as circulatory changes, due to a disease state are determined at two morphologically similar, but substantially non-overlapping areas on the surface of human tissue, e.g., the skin of a forearm, with each area being subjected to different temperature modulation programs. In addition to determination of a disease state, this invention can also be used to determine the concentration of an analyte in the tissues. This invention also provides an apparatus for the determination of a disease state, such as diabetes, or concentration of an analyte, such as blood glucose level, by the method of this invention.
Owner:ABBOTT DIABETES CARE INC

Transcriptome microarray technology and methods of using the same

Arrays containing a transcriptome of a diseased tissue and methods of using the arrays for diagnosis, prognosis, screening, and identification of disease are provided herein. The transcriptome arrays from diseased tissue are useful for diagnosis of a disease by analysis of the genetic profile of a tissue sample specific to a disease state. The genetic profiles are then correlated with data on the effectiveness of specific therapeutic agents. Correlating expression profiles to the effectiveness of therapeutic agents provides a way to screen and select further patients predicted to respond to those therapeutic agents, thereby minimizing needless exposure to ineffective therapy.
Owner:ALMAC DIAGNOSTICS LIMITED

1h-Indazole-3-carboxamide compounds as cyclin dependent kinase (cdk) inhibitors

The invention provides a compound of the formula (I) for use in the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase: wherein A is a group R2 or CH2—R2 where R2 is a carbocyclic or heterocyclic group having from 3 to 12 ring members; B is a bond or an acyclic linker group having a linking chain length of up to 3 atoms selected from C, N, S and O; R1 is hydrogen or a group selected from SO2Rb, SO2NR7R8, CONR7R8, NR7R9 and carbocyclic and heterocyclic groups having from 3 to 7 ring members; R3, R4, R5 and R6 are the same or different and are each selected from hydrogen, halogen, hydroxy, trifluoromethyl, cyano, nitro, carboxy, amino, carbocyclic and heterocyclic groups having from 3 to 12 ring members; a group Ra—Rb wherein Ra is a bond, O, CO, X1C(X2), C(X2)X1, X1C(X2)X1, S, SO, SO2, NRc, SO2NRc or NRcSO2; and Rb is selected from hydrogen, carbocyclic and heterocyclic groups having from 3 to 12 ring members, and a C1-8 hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, cyano, nitro, amino, mono- or di-C1-4 hydrocarbylamino, carbocyclic and heterocyclic groups having from 3 to 12 ring members and wherein one or more carbon atoms of the C1-8 hydrocarbyl group may optionally be replaced by O, S, SO, SO2, NRc, X1C(X2), C(X2)X1 or X1C(X2)X1; Rc is hydrogen or C1-4 hydrocarbyl; X1 is O, S or NRc and X2 is ═O, ═S or ═NRc; R7 is selected from hydrogen and a C1-8 hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, cyano, nitro, amino, mono- or di-C1-4 hydrocarbylamino, carbocyclic and heterocyclic groups having from 3 to 12 ring members and wherein one or more carbon atoms of the C1-8 hydrocarbyl group may optionally be replaced by O, S, SO, SO2, NRc, X1C(X2), C(X2)X1 or X1C(X2)X1; R8 is selected from R7 and carbocyclic and heterocyclic groups having from 3 to 12 ring members; R9 is selected from R8, COR8 and SO2R8; or NR7R8 or NR7R9 may each form a heterocyclic group having from 5 to 12 ring members; but excluding the compounds N-[(morpholin-4-yl)phenyl-1H-indazole-3-carboxamide and N-[4-(acetylaminosulphonyl)phenyl-1H-indazole-3-carboxamide.
Owner:ASTEX THERAPEUTICS LTD

System and method for cytological analysis by raman spectroscopic imaging

InactiveUS20070178067A1Superior resolution and intensitySensitive assessmentBiocideGenetic material ingredientsBiological StressData set
A method and system of differentially manipulating cells where the cells, suspended in a fluid, are irradiated with substantially monochromatic light. A Raman data set is obtained from the irradiated cells and where the data set is characteristic of a disease status. The data set is assessed to identify diseased cells. A Raman chemical image of the irradiated cells is also obtained. Based on the assessment and the Raman chemical image, the fluid in which the cells are suspended is differentially manipulated. The diseased cells are directed to a first location and other non-diseased cells are directed to a second location as part of the differential manipulation. The diseased cells may be treated with a physical stress, a chemical stress, and a biological stress and then returned to a patient from whom the diseased cells were obtained prior to the irradiation.
Owner:CHEMIMAGE

Determination of a measure of a glycation end-product or disease state using tissue fluorescence

A method of determining a measure of a tissue state (e.g., glycation end-product or disease state) in an individual. A portion of the tissue of the individual is illuminated with excitation light, then light emitted by the tissue due to fluorescence of a chemical with the tissue responsive to the excitation light is detected. The detected light can be combined with a model relating fluorescence with a measure of tissue state to determine a tissue state. The invention can comprise single wavelength excitation light, scanning of excitation light (illuminating the tissue at a plurality of wavelengths), detection at a single wavelength, scanning of detection wavelengths (detecting emitted light at a plurality of wavelengths), and combinations thereof. The invention also can comprise correction techniques that reduce determination errors due to detection of light other than that from fluorescence of a chemical in the tissue. For example, the reflectance of the tissue can lead to errors if appropriate correction is not employed. The invention can also comprise a variety of models relating fluorescence to a measure of tissue state, including a variety of methods for generating such models. Other biologic information can be used in combination with the fluorescence properties to aid in the determination of a measure of tissue state. The invention also comprises apparatuses suitable for carrying out the method, including appropriate light sources, detectors, and models (for example, implemented on computers) used to relate detected fluorescence and a measure of tissue state.
Owner:VERALIGHT INC

Hyperspectral fluorescence and absorption bioimaging

A system and method of hyperspectral chemical imaging (fluorescence or absorption based) to provide an automated approach for a more detailed analysis of disease status of a biological sample. When a biological sample is labeled with a fluorescent or light-absorbing contrast-enhancing agent, interactions between the contrast-enhancing agent and one or more constituents (or cellular components) of the biological sample may be manifested through spectral contents of a plurality of regions in a hyperspectral chemical image of the sample. Observations of such manifestations through analysis of corresponding spectral contents may greatly assist a user (e.g., a pathologist) in detecting and differentiating diseased portions of the stained sample. Hyperspectral chemical imaging may allow to identify multiple cellular components within a biological sample and to image their distribution within the sample, thereby assisting a pathologist to successfully and more accurately identify diseased portion(s) of the sample for further diagnosis and treatment.
Owner:CHEMIMAGE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products