Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

683 results about "Transcriptome" patented technology

The transcriptome is the set of all RNA molecules in one cell or a population of cells. It is sometimes used to refer to all RNAs, or just mRNA, depending on the particular experiment. It differs from the exome in that it includes only those RNA molecules found in a specified cell population, and usually includes the amount or concentration of each RNA molecule in addition to the molecular identities.

Transcriptome microarray technology and methods of using the same

Arrays containing a transcriptome of a diseased tissue and methods of using the arrays for diagnosis, prognosis, screening, and identification of disease are provided herein. The transcriptome arrays from diseased tissue are useful for diagnosis of a disease by analysis of the genetic profile of a tissue sample specific to a disease state. The genetic profiles are then correlated with data on the effectiveness of specific therapeutic agents. Correlating expression profiles to the effectiveness of therapeutic agents provides a way to screen and select further patients predicted to respond to those therapeutic agents, thereby minimizing needless exposure to ineffective therapy.
Owner:ALMAC DIAGNOSTICS LIMITED

Methods and compositions for identifying or quantifying targets in a biological sample

Compositions, kits and methods are described that comprise one or more constructs, each construct comprising a ligand attached or conjugated to a polymer construct, e.g., an oligonucleotide sequence, by a linker, each ligand binding specifically to a single target located in or on the surface of a cell. The polymer construct comprises a) an Amplification Handle; b) a Barcode that specifically identifies a single ligand; c) an optional Unique Molecular Identifier that is positioned adjacent to the Barcode on its 5′ or 3′ end; and d) an Anchor for hybridizing to a complementary sequence, e.g., for generation of a double-stranded oligonucleotide. These compositions are used in methods, including high throughput methods, for detecting one or more targets or epitopes in a biological sample. These compositions are also used in a high throughput method for characterizing a cell by simultaneous detection of one or more epitopes located in or on the cell and its transcriptome.
Owner:NEW YORK GENOME CENT

Methods for Amplifying a Complete Genome or Transcriptome

InactiveUS20140274811A1Eliminates misprimingReduces misprimingLibrary creationDNA preparationNucleotidePolymerase L
The present invention provides methods for amplifying a complete genome or transcriptome. The genome or transcriptome is prepared as a set of target nucleic acids and mixed with a first primer. The first primer comprises a target-binding region having a first random sequence of about 6 to about 9 nucleotides and a tag sequence that contains one or more non-natural nucleotides. The first primer is annealed to the target nucleic acids and extended by polymerase to produce a first duplex nucleic acid. The target nucleic acid is removed from the first nucleic acid. A second primer is annealed to the first nucleic acid having a second random sequence of about 6 to about 9 nucleotides and a tag sequence that contains one or more non-natural nucleotides. The second primer is extended by polymerase to produce a second duplex nucleic acid. The second nucleic acid contains a tag sequence on one terminus and a complement of the tag sequence on the other. The first nucleic acid is removed from the second nucleic acid. A third primer is annealed to the second nucleic acid having the same sequence as the tag sequence or a portion thereof and at least one of the non-natural nucleotides of the tag sequence. The third primer is extended by polymerase to produce a third duplex nucleic acid. The second nucleic acid is removed from the third nucleic acid. The third primer is annealed to the second nucleic acid and the third nucleic acid. The third primer is extended by polymerase. Repeating these last three steps thereby results in amplification of the genome or transcriptome.
Owner:AEGEA BIOTECH

Transcriptome-based tumor neoantigen identification method

The invention discloses a transcriptome-based tumor antigen identification method. The method comprises four steps of: obtaining an RNA sample of a patient tumor tissue, and carrying out library construction and amplification on the RNA sample to obtain an RNA sample sequencing result of the tumor tissue; aligning short read segments of the RNA sample sequencing result to a human reference genometo obtain an RNA alignment result; calculating gene expression quantity according to the RNA alignment result, and carrying out mutation detection and prediction of fusion gene events according to theRNA alignment result; and predicting transcriptome HLA typing according to the alignment result, wherein calculation of the gene expression quantity, mutation detection and prediction of the fusion gene events are carried out according to a specified order or simultaneously carried out; and using the gene expression quantity of a transcriptome sample, depth of transcriptome mutation sites in a whole-exon sequencing sample and binding force of neonatal short peptides and the patient HLA typing as an analysis result to submit the same to a downstream analyst. The invention provides the method capable of identifying a tumor-specific antigen of an individual sample from tumor patient transcriptome NGS data.
Owner:HANGZHOU NEOANTIGEN THERAPEUTICS CO LTD

Method for high-throughput analysis of single cell inclusions by using paired micro-fluidic chip

The invention relates to a method for high-throughput analysis of single cell inclusions by using a paired micro-fluidic chip. The paired micro-fluidic chip is the micro-fluidic chip for high-throughput capturing single microspheres / single cells. The method comprises the steps of (1) carrying out high-throughput pairing capturing on single microspheres / single cells; (b) carrying out parallel control on a pairing unit, for example, isolation, cultivation and pyrolysis of a lot of single cells, and capturing of various inclusions in the single cells; and (c) converting information of the single cell inclusions into DNA sequence information through encoding the microspheres, analyzing a lot of single cell inclusions, such as a transcriptome, a genome, an miRNA, a proteome, a methylated DNA, a metabolite, a lipidosome and phospholipid by adopting a high-throughput sequencing technology and a bioinformatics method. According to the method, the single cell inclusion information can be comprehensively and completely analyzed, and the method has the advantages of high throughput, high accuracy, low cost and wide analyzable target.
Owner:HANGZHOU WEIZHU BIOLOGICAL TECH CO LTD

Method for screening real-time fluorescence quantification PCR internal reference molecules of syntrichia caninervis in desert

The invention relates to a method for screening real-time fluorescence quantification PCR internal reference molecules of syntrichia caninervis in a desert. The method comprises the following steps: selecting 15 internal reference candidate genes by utilizing a syntrichia caninervis transcriptome database, designing an internal reference gene specific primer of real-time fluorescence quantification PCR by taking 15 internal reference genes as templates; carrying out a fluorescence quantification PCR experiment by selecting syntrichia caninervis gametophytes stressed by 10 non-living things and free of stress (in contrast) as experimental materials; carrying out fluorescence quantification data analysis by using geNorm, NormFinder and Refinder software, so as to screen out the best fit and the most stable internal reference molecules CDPK and alpha-TUB2 of the syntrichia caninervis for developing fluorescence quantification research under various abiotic stresses. By adopting the method disclosed by the invention, the errors of the syntrichia caninervis transcriptome material under different abiotic stresses in ribonucleic acid (RNA) quality, yield, reverse transcription efficiency and the like can be avoided, the real-time fluorescence quantification detection data can be better corrected and standardized, and the accuracy and the reliability of the gene quantification research are improved.
Owner:XINJIANG INST OF ECOLOGY & GEOGRAPHY CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products