Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

9383 results about "Blood sugar" patented technology

The blood sugar level, blood sugar concentration, or blood glucose level is the concentration of glucose present in the blood of humans and other animals. Glucose is a simple sugar and approximately 4 grams of glucose are present in the blood of a 70-kilogram (150 lb) human at all times. The body tightly regulates blood glucose levels as a part of metabolic homeostasis. Glucose is stored in skeletal muscle and liver cells in the form of glycogen; in fasted individuals, blood glucose is maintained at a constant level at the expense of glycogen stores in the liver and skeletal muscle.

System and method for continuous non-invasive glucose monitoring

A system and method for continuous non-invasive glucose monitoring is disclosed. According to one embodiment of the present invention, the method includes the steps of (1) contacting a remote device to an area of biological membrane having a permeability level, the remote device comprising a sensor and a transmitter; (2) extracting the at least one analyte through and out of the area of biological membrane and into the sensor; (3) generating an electrical signal representative of a level of the at least one analyte; (4) transmitting the electrical signal to a base device; (5) processing the electrical signal to determine the level of the at least one analyte; and (6) displaying the level of the at least one analyte in real time. The system includes a remote device that includes a sensor that generates an electrical signal representative of the concentration of the at least one analyte; and a transmitter that transmits the electrical signal. The system further includes a base device that includes a receiver that receives the electrical signal; a processor that processes the electrical signal; and a display that displays the processed signal in real time.
Owner:ECHO THERAPEUTICS INC

System for monitoring physiological characteristics

Apparatuses and methods for medical monitoring physiological characteristics values such as blood glucose levels for the treatment of diabetes, are presented. The apparatuses and methods provide dynamic glucose monitoring functions that perform predictive analysis to anticipate harmful conditions, such as glucose crash and hyperglycemic incidents for a patient. The dynamic functions can also be used to maximize athletic performance and warn of inadequate nocturnal basal rate. Other aspects include advanced alarm and reminder functions, as well as advanced data presentation tools to further facilitate convenient and efficient management of various physiological conditions.
Owner:FOX JAMES KELLY +4

Glucose level control method and system

A method and device are provided for self-monitoring a patient's blood glucose condition to determine a long-term effect of the patient's behavior on his blood glucose level. A sequence of measurements of the blood glucose level is applied during a day, the sequential measurements are repeated during a predetermined time period from several days to several weeks, and measured data are collected. The measured data is analyzed to determine a distribution of the average glucose values within said predetermined time period, thereby providing a feedback for the patient or an authorized person.
Owner:ORSENSE LTD

Fluid component analysis system and method for glucose monitoring and control

ActiveUS20100121170A1Preventing hypoglycemiaDrug and medicationsMedical devicesAnalyteMedicine
Disclosed are methods and apparatuses for determining analyte concentration in a sample such as bodily fluid. Systems and methods disclosed herein can also include a treatment dosing system to infuse or inject a treatment dose (e.g. insulin, dextrose, etc.) and provide glycemic control. The dose of the treatment drug may be based on the patient's calculated sensitivity to treatment dosing, for example. The dose of the treatment drug may be based on the concentration of the analyte or the average value for the concentration of the analyte and / or the rate of change of the value of the concentration of the analyte. Delivery of the treatment drug can be cut off if the determined analyte concentration indicates that continued delivery would be harmful to the patient.
Owner:OPTISCAN BIOMEDICAL +1

Method to determine the degree and stability of blood glucose control in patients with diabetes mellitus via the creation and continuous update of new statistical indicators in blood glucose monitors or free standing computers

Microvascular complications of diabetes mellitus are closely related to blood glucose levels and fluctuations. The Glycostator statistical package was created to allow patients and health care providers simple access to “glycemic indicators” which permit a “snapshot view” of the effectiveness of the patient's diabetes management program. Glycostator functions provide a simple way of enhancing the information already provided by home blood glucose monitoring devices. To this end, a set of new indices, including one called the Virtual A1c, are computed in a recursive fashion from blood glucose test results to provide a more meaningful day-to-day assessment of glycemic control. All indices can be made available at the meter user interface on request. The displayed indices allow patients to improve glycemic control by identifying problems with blood glucose control and lability that are less easily recognized in traditional blood glucose meter statistical packages. Virtual A1c emulates hemoglobin A1c continuously and provides better day-to-day assessment of long term glycemic control than does the traditional average blood glucose report. The method for computing each of these indices, including the Virtual A1c, allows for their implementation in commercial blood glucose monitors.
Owner:ROCHE DIABETES CARE INC

Device for capturing thermal spectra from tissue

A device and method are provided for use with a noninvasive optical measurement system, such as a thermal gradient spectrometer, for improved determination of analyte concentrations within living tissue. In one embodiment, a wearable window is secured to a patient's forearm thereby isolating a measurement site on the patient's skin for determination of blood glucose levels. The wearable window effectively replaces a window of the spectrometer, and thus forms an interface between the patient's skin and a thermal mass window of the spectrometer. When the spectrometer must be temporarily removed from the patient's skin, such as to allow the patient mobility, the wearable window is left secured to the forearm so as to maintain a consistent measurement site on the skin. When the spectrometer is later reattached to the patient, the wearable window will again form an interface between the spectrometer and the same location of skin as before.
Owner:OPTISCAN BIOMEDICAL

Method for optical measurements of tissue to determine disease state or concentration of an analyte

A method for collecting optical data at two morphologically similar, substantially non-overlapping, and preferably adjacent, areas on the surface of a tissue, while the temperature in each area is being maintained or modulated according to a temperature program. The optical data obtained are inserted into a mathematical relationship, e.g., an algorithm, that can be used to predict a disease state (such as the diabetes mellitus disease state) or the concentration of an analyte for indicating a physical condition (such as blood glucose level). This invention can be used to differentiate between disease status, such as, for example, diabetic and non-diabetic. The method involves the generation of a calibration (or training) set that utilizes the relationship between optical signals emanating from the skin under different thermal stimuli and disease status, e.g., diabetic status, established clinically. This calibration set can be used to predict the disease state of other subjects. Structural changes, as well as circulatory changes, due to a disease state are determined at two morphologically similar, but substantially non-overlapping areas on the surface of human tissue, e.g., the skin of a forearm, with each area being subjected to different temperature modulation programs. In addition to determination of a disease state, this invention can also be used to determine the concentration of an analyte in the tissues. This invention also provides an apparatus for the determination of a disease state, such as diabetes, or concentration of an analyte, such as blood glucose level, by the method of this invention.
Owner:ABBOTT DIABETES CARE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products