A self-powered tire revolution counter includes a motion sensitive power generation mechanism, a power conditioner, a pulse detector, a microcontroller, and, optionally, a radio frequency (RF) transmitting device. In one exemplary embodiment, the power generation mechanism corresponds to a piezoelectric patch that, during movement, provides both operating electrical power and pulsed signals indicative of tire rotation. The power conditioner receives a generator signal from the power generation mechanism and produces a conditioned output voltage that can be used to power associated electronic devices, including the microcontroller. The pulse detector receives the generator signal and produces a detection signal whenever the generator signal meets a predetermined condition. The microcontroller is programmed to determine current and lifetime-accumulated values of selected pulse indications in the detection signal that meet predetermined criteria. Data corresponding to tire environment related parameters such as temperature, pressure, tire deflection, and / or vehicle speed may be stored in the microcontroller at times during tire rotation as power is supplied from the power generation mechanism through the power conditioner. Additional data may be supplied to the microcontroller directly from an external source and read from the microcontroller either by direct electrical contact or via selective RF transmission.