Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

750 results about "Spectral signature" patented technology

Spectral signature is the variation of reflectance or emittance of a material with respect to wavelengths (i.e., reflectance/emittance as a function of wavelength). The spectral signature of stars indicates the composition of the stellar atmosphere. The spectral signature of an object is a function of the incidental EM wavelength and material interaction with that section of the electromagnetic spectrum.

Method for the precise measurement of the wavelength of light

A process for measuring the absorption spectrum of a target analyte using a cavity ring down spectrometer, comprising the steps of: i) tuning the spectrometer laser so that the light transmitted from the laser into the spectrometer optical cavity is varied over a wavelength interval which encompasses both the absorption wavelength of a spectral feature of the target analyte and a plurality of the free spectral ranges of the optical cavity; ii) triggering a plurality of ringdown events; iii) for each ringdown event, recording the decay time constant and the trigger time at which the light into the cavity is shut off; iv) organizing the decay time constants, light wavelengths and trigger times as a function of trigger time; v) ordering said light wavelengths by increasing value and placing groups of wavelengths into individual bins; vi) computing the average wavelength of each bin group; vii) grouping the decay time constants and trigger times into bins that parallel said wavelength bins, with the decay time constants in each of said parallel bin being arranged by increasing trigger time; viii) computing the average decay time for each decay time bin and using this decay time average, together with the average wavelength from the parallel wavelength bin, to compute the optical loss for the target analyte at said average wavelength.
Owner:PICARRO

Method and apparatus for reading reporter labeled beads

Combinatorially-synthesized deoxyribonucleic acid (DNA) oligonucleotides attached to encoded beads that are hybridized to amplified and labeled genomic DNA or ribonucleic acid (RNA) are analyzed using a flow imaging system. Oligonucleotides and corresponding reporters are bound to the surfaces of a plurality of small beads such that different beads bear different oligo sequences. Each bead bears a unique optical signature comprising a predefined number of unique reporters, where each reporter comprises a predefined combination of different fluorochromes. The composite spectral signature in turn identifies the unique nucleotide sequence of its attached oligo chains. This optical signature is rapidly decoded using an imaging system to discriminate the different reporters attached to each bead in a flow in regard to color and spatial position on the bead.
Owner:AMNIS CORP

Iris recognition using hyper-spectral signatures

The spectral diversity of the iris can be used as a unique biometric identifier. By careful selection of a number of spectral bands, four or more, the hyper-spectral signature derived from data contained in those bands can distinguish color signatures that are not visually distinguishable in RGB color space to uniquely identify a person. Classification of hyper-spectral signatures requires less spatial resolution than the classification of texture signatures, maybe an order of magnitude or more. This reduces the size of the sensor aperture required at a given range.
Owner:RAYTHEON CO

Method and apparatus for the determination of intrinsic spectroscopic tumor markers by broadband-frequency domain technology

The illustrated embodiment is an improvement in a method of optically analyzing tissue in vivo in an individual to obtain a unique spectrum for the tissue of the individual, the improvement including the steps of optically measuring the tissue of the individual to obtain a spectrum of an optical parameter, and identifying a spectral signature specific to a metabolic or physiologic state in the tissue of the individual with a unique spectrum for the tissue by considering only the spectral differences between a first metabolic or physiologic state of the tissue of the individual and one or more other metabolic or physiologic states of the tissue of the individual such that identification of the spectral signature is self-referencing with respect to intra-individual metabolic or physiologic variations. The method also includes separating benign and malignant lesions only using the shape or a characteristic of the spectrum.
Owner:RGT UNIV OF CALIFORNIA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products