Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

174 results about "Laser scanning microscope" patented technology

Scanning a focused laser beam allows the acquisition of digital images with very high resolution since the resolution is determined by the position of the beam rather than the pixel size of the detector. Laser Scanning Microscopy (LSM) and Confocal LSM (CLSM) permit a wide range of qualitative and quantitative measurements on difficult samples.

Multi-photon laser microscopy

A laser scanning microscope produces molecular excitation in a target material by simultaneous absorption of three or more photons to thereby provide intrinsic three-dimensional resolution. Fluorophores having single photon absorption in the short (ultraviolet or visible) wavelength range are excited by a beam of strongly focused subpicosecond pulses of laser light of relatively long (red or infrared) wavelength range. The fluorophores absorb at about one third, one fourth or even smaller fraction of the laser wavelength to produce fluorescent images of living cells and other microscopic objects. The fluorescent emission from the fluorophores increases cubicly, quarticly or even higher power law with the excitation intensity so that by focusing the laser light, fluorescence as well as photobleaching are confined to the vicinity of the focal plane. This feature provides depth of field resolution comparable to that produced by confocal laser scanning microscopes, and in addition reduces photobleaching and phototoxicity. Scanning of the laser beam by a laser scanning microscope, allows construction of images by collecting multi-photon excited fluorescence from each point in the scanned object while still satisfying the requirement for very high excitation intensity obtained by focusing the laser beam and by pulse time compressing the beam. The focused pulses also provide three-dimensional spatially resolved photochemistry which is particularly useful in photolytic release of caged effector molecules, marking a recording medium or in laser ablation or microsurgery. This invention refers explicitly to extensions of two-photon excitation where more than two photons are absorbed per excitation in this nonlinear microscopy.
Owner:WEBB WATT W +1

Laser scanning microscope and image acquiring method of laser scanning microscope

Provided is a laser scanning microscope having a first focusing-position control unit; and a confocal detecting unit. The first focusing-position control unit shifts a first focusing position of a laser beam on a sample in a direction of an optical axis of an objective lens. The confocal detecting unit has a confocal aperture for a confocal detection of a light emitted from the first focusing position. The microscope may include a second focusing-position control unit shifts a second focusing position of the light emitted from the first focusing position focused by the confocal detecting unit in a direction of an optical path thereof.
Owner:EVIDENT CORP

Immersion microscope objective and laser scanning microscope system using same

ActiveUS20090027769A1Bright fluorescenceMicroscopesLaser scanning microscopeLaser scanning
An immersion microscope objective formed of thirteen or fewer lens elements includes, in order from the object side, first and second lens groups of positive refractive power, a third lens group, a fourth lens group having negative refractive power with its image-side surface being concave, and a fifth lens group having positive refractive power with its object-side surface being concave. The first lens group includes, in order from the object side, a lens component that consists of a lens element of positive refractive power (when computed as being in air) and a meniscus lens element having its concave surface on the object side. Various conditions are satisfied to ensure that images of fluorescence, obtained when the immersion microscope objective is used in a laser scanning microscope that employs multiphoton excitation to observe a specimen, are bright and of high resolution. Various laser scanning microscopes are also disclosed.
Owner:EVIDENT CORP

Laser beam induced phenomena detection

Apparatus for and methods of inspection using laser beam induced alteration are provided. In one aspect, an apparatus is provided that includes a laser scanning microscope for directing a laser beam at a circuit structure and a source for biasing and thereby establishing a power condition in the circuit structure. A detection circuit is provided for detecting a change in the power condition in response to illumination of the circuit structure by the laser beam and generating a first output signal based on the detected change. A signal processor is provided for processing the first output signal and generating a second output signal based thereon. A control system is operable to scan the laser beam according to a pattern that has a plurality of pixel locations, whereby the laser beam may be moved to a given pixel location and allowed to dwell there for a selected time before being moved to another pixel location.
Owner:GLOBALFOUNDRIES INC

Laser scanning microscope, semiconductor laser light source unit, scanning unit for a laser scanning microscope, and method of connecting semiconductor light source to scanning microscope

A laser scanning microscope according to the present invention is a laser scanning microscope which scans a laser beam on a sample by a scanning optical system in a scanning optical system main body to detect a fluorescence or reflected light from the sample, and a light source section comprising a light source manufactured by a semiconductor process and an optical fiber provided on a radiation side of the light source is incorporated in the scanning optical system main body.
Owner:EVIDENT CORP +1

Arrangement for illumination and/or detection in a microscope

A laser scanning microscope comprises at least one selectively switchable micro-mirror arrangement (DMD) in the illumination beam path and / or detection beam path which is used for the wavelength selection of dispersively divided illumination and / or object light such as reflection, fluorescence.
Owner:CARL ZEISS MICROSCOPY GMBH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products