Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

62 results about "Ferrierite" patented technology

The ferrierite group of zeolite minerals (the FER structure) consists of three very similar species: ferrierite-Mg, ferrierite-Na, and ferrierite-K, based on the dominant cation in the A location. ferrierite-Mg and ferrierite-K are orthorhombic minerals and ferrierite-Na is monoclinic with highly variable cationic composition, (Na,K)₂Mg(Si,Al)₁₈O₃₆(OH)·9H₂O. Calcium and other ions are often also present. They are found in vitreous to pearly, often radiating, spherical aggregates of thin blade-shaped transparent to translucent crystals.

High temperature ammonia SCR catalyst and method of using the catalyst

A catalyst and a method for selectively reducing nitrogen oxides (“NOx”) with ammonia are provided. The catalyst includes a first component comprising a zeolite or mixture of zeolites selected from the group consisting of ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM-23, MCM-zeolites, mordenite, faujasite, ferrierite, zeolite beta, and mixtures thereof; a second component comprising at least one member selected from the group consisting of cerium, iron, copper, gallium, manganese, chromium, cobalt, molybdenum, tin, rhenium, tantalum, osmium, barium, boron, calcium, strontium, potassium, vanadium, nickel, tungsten, an actinide, mixtures of actinides, a lanthanide, mixtures of lanthanides, and mixtures thereof; optionally an oxygen storage material and optionally an inorganic oxide. The catalyst selectively reduces nitrogen oxides to nitrogen with ammonia at high temperatures. The catalyst has high hydrothermal stability. The catalyst has high activity for conversion of low levels of nitrogen oxides in exhaust streams. The catalyst and the method may have special application to selective reduction of nitrogen oxides in exhaust gas from gas turbines and gas engines, although the catalyst and the method have broad application to a wide range of gas streams that have excess oxygen and high temperatures. The temperature of exhaust gas from gas turbines and gas engines is high. Both the high temperature and the low levels of inlet NOx are challenging for selective catalytic reduction (SCR) catalysts.
Owner:CATALYTIC SOLUTIONS INC

Catalytic system and process for direct synthesis of dimethyl ether from synthesis gas

A mixed-bed catalytic system and its activation for direct synthesis of dimethyl ether from synthesis gas are described, comprising a catalyst for methanol synthesis and the zeolite ferrierite in its acid form as the methanol dehydrating component, the two being mixed physically in the form of powder of defined granulometry or as pellets. Another object of the present invention is a process for production of the acid form of the zeolite ferrierite. Another object of the present invention is a process for direct synthesis of dimethyl ether from a synthesis gas, using the catalytic system of the present invention.
Owner:PETROLEO BRASILEIRO SA (PETROBRAS) +1

High temperature ammonia SCR catalyst and method of using the catalyst

A catalyst and a method for selectively reducing nitrogen oxides (“NOx”) with ammonia are provided. The catalyst includes a first component comprising a zeolite or mixture of zeolites selected from the group consisting of ZSM-5, ZSM-11, ZSM-12, ZSM-18, ZSM-23, MCM-zeolites, mordenite, faujasite, ferrierite, zeolite beta, and mixtures thereof; a second component comprising at least one member selected from the group consisting of cerium, iron, copper, gallium, manganese, chromium, cobalt, molybdenum, tin, rhenium, tantalum, osmium, barium, boron, calcium, strontium, potassium, vanadium, nickel, tungsten, an actinide, mixtures of actinides, a lanthanide, mixtures of lanthanides, and mixtures thereof; optionally an oxygen storage material and optionally an inorganic oxide. The catalyst selectively reduces nitrogen oxides to nitrogen with ammonia at high temperatures. The catalyst has high hydrothermal stability. The catalyst has high activity for conversion of low levels of nitrogen oxides in exhaust streams. The catalyst and the method may have special application to selective reduction of nitrogen oxides in exhaust gas from gas turbines and gas engines, although the catalyst and the method have broad application to a wide range of gas streams that have excess oxygen and high temperatures. The temperature of exhaust gas from gas turbines and gas engines is high. Both the high temperature and the low levels of inlet NOx are challenging for selective catalytic reduction (SCR) catalysts.
Owner:CATALYTIC SOLUTIONS INC

Boron-modified ferrierite molecular sieve catalyst as well as preparation method and application thereof

The invention provides a boron-modified ferrierite molecular sieve catalyst as well as a preparation method and application thereof. The preparation method comprises the following steps: adding an alkali source, an aluminum source and a boron source into water, and stirring to form a uniform solution; adding a ferrierite molecular sieve seed crystal, a silicon source and a template agent into the uniform solution, and stirring until a sol solution is formed; crystallizing the sol solution under a hydrothermal condition, and carrying out filtration, drying and roasting, so as to obtain boron-modified sodium-type ferrierite molecular sieve raw powder; carrying out ion exchange on the boron-modified sodium-type ferrierite molecular sieve raw powder and an ammonium salt water solution or diluted hydrochloric acid, filtering, and drying, so as to obtain hydrogen-type molecular sieve raw powder; and mixing the hydrogen-type molecular sieve raw powder with a binder and water, carrying out extrusion formation, drying, and roasting, so as to obtain the boron-modified ferrierite molecular sieve catalyst. The boron-modified ferrierite molecular sieve catalyst prepared by virtue of the preparation method has the advantages of high activity, long single pass life, strong anti-carbon property and low liquid phase yield.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)

Catalyst for preparing iso-olefins by isomerizing straight-chain olefins and preparation method of catalyst

The invention discloses a catalyst for preparing iso-olefins by isomerizing straight-chain olefins and a preparation method of the catalyst. The catalyst uses the FER (ferrierite) zeolite raw powder as a main active body, wherein the silica-alumina ratio (SiO2 / Al2O3) (molar ratio) is less than 50. The preparation method comprises the following steps: mixing FER zeolite raw powder, silica sol and / or alumina sol, organic acid and water evenly; carrying out molding, drying and calcinaton, and soaking in a VIII group metal oxide solution; and carrying out drying and calcination to obtain the catalyst. For the isomerization of straight-chain olefins, the catalyst is good in activity and stability, high in both conversion rate of straight-chain olefins and selectivity to iso-olefins and can be applied to the field of industrial production of the iso-olefins, such as the industrial production of isobutene and isoamylene.
Owner:王伟跃

Sodium-potassium-hydrogen type ferrierite and method for preparing same

The invention discloses sodium-potassium-hydrogen type ferrierite and a method for preparing the same. The sodium-potassium-hydrogen type ferrierite comprises 0.02%-0.1wt% of Na2O, 1.0%-5.0wt% of K2O, wherein the molar ratio of SiO2 to Al2O3 is 8-50. The method adopts a sodium-potassium-hydrogen type ferrierite partial ammonium exchange method. The method comprises that the sodium-potassium-hydrogen type ferrierite and an inorganic ammonium salt water solution with a certain concentration are pulped uniformly, and the exchanged pulp is filtered, eluted, dried and calcinated. After the method is adopted, the pH value of the exchange fluid does not need to be adjusted, the concentration of the inorganic ammonium salt water solution only needs to be changed, and the sodium-potassium-hydrogen type ferrierite with an appropriate total alkali metal content can be obtained through one or two times of exchange at room temperature and has good usability in straight-chain olefin isomerization reaction.
Owner:CHINA PETROLEUM & CHEM CORP +1

Synthesis method of small-crystal-grain FER (Ferrierite) molecular sieve with laminar stacking structure

The invention discloses a synthesis method of a small-crystal-grain FER (Ferrierite) molecular sieve with a laminar stacking structure. The synthesis method comprises the following steps: taking a silicon source, an aluminum source, alkali, an organic template agent and water as raw materials, and rotating and ageing at relatively low temperature to form initial gel; then carrying out dynamic crystallization to obtain a primary product; then removing the organic template agent under a mild condition by utilizing a lot of low-temperature plasmas generated through a dielectric barrier discharge(DBD) device, so as to obtain the small-crystal-grain FER molecular sieve with the laminar stacking structure; finally, carrying out different depths of water stream coupled low-temperature plasma treatment on the prepared molecular sieve, so as to remove framework aluminum and adjust the acidic ratio of the FER molecular sieve, and further modify the shape and structure of the molecular sieve. The molecular sieve prepared by the invention not only has good stability, but also has a very strong carbon deposition resisting capability; when the molecular sieve is used for catalyzing n-butene isomerization reaction, excellent performance is obtained, and the stability of a catalyst is effectively enhanced; the service life of the catalyst is extremely improved.
Owner:XIAMEN UNIV

Modified ferrierite as well as preparation method and application thereof

The invention discloses a modified ferrierite as well as a preparation method and application thereof. The modified ferrierite is prepared from the following component in percentage by weight: 0.02-0.1% of Na2O, 1.0-5.0% of K2O and 0.05-0.5% of SiO2 in silicon introduced for surface silanization, wherein the molar ratio of the SiO2 to the Al2O3 in the modified ferrierite is 8-50. The modified ferrierite is prepared by exchanging sodium-potassium ferrierite by ammonium partially to obtain sodium-potassium-hydrogen ferrierite and silanizing the surface of the sodium-potassium-hydrogen ferrierite. Due to the adoption of the preparation method, the number of hydroxyls and acid sites on the outer surface of the ferrierite can be reduced effectively. The silanized and modified ferrierite has good use performance in the straight-chain olefin isomerization reaction.
Owner:CHINA PETROLEUM & CHEM CORP +1

Catalytic system and additive for maximisation of light olefins in fluid catalytic cracking units in operations of low severity

The present invention concerns the field of fluid catalytic cracking (FCC) processes. The invention provides a process increasing production of LPG and propene in FCC units operating under conditions of maximisation of middle distillates of low aromaticity, such that they may be incorporated into the diesel oil pool. The invention also relates to the preparation and employment of additives based on zeolites having small pores, such as ferrierite (FER), in catalytic systems for FCC units, wherein conditions of low severity are adopted with a view to increasing yields of LPG and light olefins whilst improving stability of petrol. The invention also provides an original catalytic system, being more efficient than catalytic systems known in the state of the art, to increase the yield of LPG and propene without prejudicing the yield and quality of LCO. Furthermore it provides a method of preparation of an additive for said process employing the zeolite ferrierite.
Owner:PETROLEO BRASILEIRO SA (PETROBRAS)

Small crystal ferrierite and method of making the same

There is disclosed a highly crystalline, small crystal, ferrierite zeolite prepared from a gel containing a source of silica, alumina, alkali metal and a combination of two templating agents. The resulting material includes ferrierite crystals having a particle size of about or less than about 200 nm. The desired crystal size can be achieved by using a specific composition of the gel. The purity of the material and the crystal size was determined by using X-ray powder diffraction and scanning electron microscopy. The material has excellent surface area and micropore volume as determined by nitrogen adsorption.
Owner:ECOVYST CATALYST TECH LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products