Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

671 results about "Transparent ceramics" patented technology

Many ceramic materials, both glassy and crystalline, have found use as optically transparent materials in various forms from bulk solid-state components to high surface area forms such as thin films, coatings, and fibers. Such devices have found widespread use for various applications in the electro-optical field including: optical fibers for guided lightwave transmission, optical switches, laser amplifiers and lenses, hosts for solid-state lasers and optical window materials for gas lasers, and infrared (IR) heat seeking devices for missile guidance systems and IR night vision.

Transparent ceramic and method for production thereof, and optical element

A ceramic material powder for a translucent ceramic is molded with a binder, and the resulting green compact is embedded in a ceramic powder having the same composition with the ceramic material powder. After removing the binder, the green compact embedded in the ceramic powder is fired in an atmosphere having an oxygen concentration higher than that in the removal procedure of the binder and thereby yields a translucent ceramic represented by Formula I: Ba{(SnuZr1-u)xMgyTaz}vOw, Formula II: Ba(ZrxMgyTaz)vOw or Formula III: Ba{(SnuZr1-u)xZntMg1-t)yNbz}vOw. The translucent ceramic has a refractive index of 1.9 or more and is paraelectric.
Owner:MURATA MFG CO LTD

Transparent ceramic composite

A ceramic composite and method of making are provided. The ceramic composite may be transparent and may serve as transparent armor. The ceramic portion of the composite may be single crystal sapphire. The composite may provide adequate protection from projectiles while exhibiting large surface areas and relatively low areal densities.
Owner:SAINT GOBAIN CERAMICS & PLASTICS INC

Reflector with a resistant surface

A reflector with high total reflection which is resistant to mechanical stresses. The reflector comprises a reflector body and superimposed thereon (a) a functional coating such as a varnish, (b) a reflecting layer structure composed of a reflecting metallic layer and optionally arranged thereon one or several transparent ceramic layers, for example, layers having an optical depth of λ / 2. The reflecting layer structure contains, as its surface layer, a protective layer. The protective layer is a silicon oxide of general formula SiOx, wherein x is a number from 1.1 to 2.0, or it is aluminum oxide of formula Al2O3, in a thickness of 3 nm or more. The protective layer protects the underlying layers from mechanical damages. In the DIN 58196 abrasion test the protected surface does not show any damages after 50 test cycles with 100 abrasion strokes.
Owner:ALANOD ALUMINUM VEREDLUNG +1

Method for preparing Re:YAG polycrystalline transparent ceramic by using different molding modes

InactiveCN102060540ACeramic sinteringLiquid medium
The invention relates to a method for preparing Re:YAG polycrystalline transparent ceramic by using different molding modes, which adopts commercial high-purity Y2O3, Al2O3 and Re2O3 as raw materials, adopts MgO, CaO or TEOS (tetraethyl orthosilicate) as sintering additive, and prepares a raw blank by a cold isostatic pressing, slip casting or tape casting process to react and sinter the transparent polycrystalline Re:YAG ceramic. The method comprises the following steps: mixing and adding the oxides into a liquid medium; adding a certain amount of dispersant, adhesive, plasticizer, pressing agent and defoaming agent, carrying out ball milling, and mixing; treating the slurry under different conditions in different molding modes to obtain the raw blank; and sintering the degreased raw blank in a vacuum furnace. For the Re:YAG ceramic sintering body with thickness of 1.5mm, the transmission rate of straight light in the wavelength of 1064nm is not lower than 80% after the Re:YAG ceramic sintering body is subjected to double-sided polishing. For the raw blank which is prepared by different molding modes and is sintered for 10 hours at 1750 DEG C, sizes of ceramic grains are different, wherein regarding the raw blank prepared by cold isostatic pressing, the average grain of the ceramic is 13.5mu m; regarding the raw blank prepared by slip casting, the average grain of the ceramic is 3.5mu m; and regarding the raw blank prepared by tape casting, the average grain of the ceramic is 1.5mu m.
Owner:FUJIAN INST OF RES ON THE STRUCTURE OF MATTER CHINESE ACAD OF SCI

Method for preparing yttrium aluminium garnet transparent ceramic with composite structure

The invention provides a method for preparing yttrium aluminium garnet (YAG) transparent ceramic with a composite structure. The method comprises the following steps: by using Re:YAG powder and high-purity Y2O3, Al2O3 and Re2O3 as raw materials, adding a certain amount of dispersing agent, binder, plasticizer and defoaming agent to mix slurry in a ball-milling manner; preparing different doped and bound composite structures of ceramic biscuits, such as Sm:YAG / Nd:YAG, Cr:YAG / Yb:YAG and YAG / Nd:YAG, different multi-segment doped Re:YAG ceramic biscuits, such as YAG / Cr:YAG / Nd:YAG / YAG, a core-shell structured composite ceramic biscuit, and a layered composite structure of transparent ceramic biscuit in a vacuum pressure slip casting manner. Different composite structures of Re:YAG transparent ceramics are obtained by the following processing steps: biscuit degreasing, vacuum sintering, hot isostatic pressing sintering, annealing and the like. The linear transmittance of the transparent ceramic after being polished at double sides in a visible near infrared region can be up to over 80%.
Owner:FUJIAN INST OF RES ON THE STRUCTURE OF MATTER CHINESE ACAD OF SCI

Method for manufacturing LED with transparent ceramics

A method for manufacturing an LED (light emitting diode) with transparent ceramic is provided, which includes: adding quantitative fluorescent powder into transparent ceramic powder, wherein the doped ratio of the fluorescent powder is 0.01-100 wt %; preparing the fluorescent transparent ceramic using ceramic apparatus and process, after fully mixing the raw material; assembling the prepared fluorescent transparent ceramic and a semiconductor chip to form the LED device. The method assembles the fluorescent transparent ceramic and a semiconductor chip to form the LED device by replacing the fluorescent powder layer and the epoxy resin package casting of the traditional LED with fluorescent transparent ceramic. The fluorescent transparent ceramic is used as the package cast and fluorescent material, and the LED device manufactured through the method has more excellent performance.
Owner:BRIGHT CRYSTALS TECH

Method for producing transparent ceramic fluorescence substrate used for LED

InactiveCN102718492AImprove light uniformityEliminates concentration inequalitiesFluorescenceSilica gel
The present invention discloses a method for producing a transparent ceramic fluorescence substrate used for a LED, which comprises the following steps: (1) mixing; (2) granulating; (3) molding; (4) isopressing; (5) dumping and sintering; (6) polishing and grinding; and (7) scribing. The substrate prepared by the method of the invention can realize all the functions of a traditional substrate, and has fluorescent characteristics, the LED chips can be directly fixed on the substrate for realizing the white light of the LED, because that various concentrations of fluorescent powder in silica gel and resin can be eliminated, the consistency of the LED products can be enhanced, the substrate prepared by the method of the invention has the advantages of good light uniformity, easy thickness control, and the method provided by the invention belongs to the planarization process, and is suitable for integrated large-scale production.
Owner:SUZHOU JINGPIN OPTOELECTRONICS

Preparation method for gamma-AlON transparent ceramic powder

The invention relates to a method for preparing pure-phase gamma-AlON transparent ceramic powder by carbothermal reduction of gamma-Al2O3, and belongs to the field of preparation of transparent ceramic materials. According to the preparation method, nano-alpha-Al2O3 and activated carbon are taken as raw materials; powder is filled in a graphite crucible loosely, wherein an aluminum oxide plate is paved at the bottom of the graphite crucible; an air hole which penetrates through the powder is preformed at the aluminum oxide plate; a graphite cover provided with fine and dense air holes is used for covering the hole; the pure-phase gamma-AlON transparent ceramic powder is prepared by adopting a two-step heating process in a flowing nitrogen environment with a micro positive pressure. By the adoption of the preparation method, the vacuumizing difficulty can be effectively reduced, powder is prevented from scattering in a vacuumizing stage, the time required for discharging adsorbed gas can be greatly shortened, the vacuumizing speed is high, and the preparation efficiency of the gamma-AlON powder is greatly improved; the obtained gamma-AlON powder phase has stable and reliable compositions and can be used for pressure-less sintering preparation of AlON transparent ceramics with high transmittance; the process is simple and is easy to operate, and is suitable for industrial production.
Owner:DALIAN MARITIME UNIVERSITY

Preparation method of yttria-base transparent ceramics with designable component and structure

InactiveCN101698602AMaterials scienceTape casting
The invention belongs to the field of ceramics preparation, in particular to a preparation method of yttria-base transparent ceramics with designable component and structure. The invention uses the method of tape casting to prepare yttria-base ceramic powder doped with laser ions into a cast film; the cast film with different components is laminated to prepare a ceramic biscuit with complex shape and special component and performance by designing the component and structure; after the biscuit unsticks, biscuit density and uniformity are obviously superior to a sample shaped by dry pressing after cold isostatic pressing again. The sintering method of the invention can obtain transparent ceramics with higher performance if compared with the prior art.
Owner:SHANGHAI INST OF CERAMIC CHEM & TECH CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products