Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1391results about "Radioactive sources" patented technology

Apparatus and method for treating a substrate with UV radiation using primary and secondary reflectors

Embodiments of the invention relate generally to an ultraviolet (UV) cure chamber for curing a dielectric material disposed on a substrate and to methods of curing dielectric materials using UV radiation. A substrate processing tool according to one embodiment comprises a body defining a substrate processing region; a substrate support adapted to support a substrate within the substrate processing region; an ultraviolet radiation lamp spaced apart from the substrate support, the lamp configured to transmit ultraviolet radiation to a substrate positioned on the substrate support; and a motor operatively coupled to rotate at least one of the ultraviolet radiation lamp or substrate support at least 180 degrees relative to each other. The substrate processing tool may further comprise one or more reflectors adapted to generate a flood pattern of ultraviolet radiation over the substrate that has complementary high and low intensity areas which combine to generate a substantially uniform irradiance pattern if rotated. Other embodiments are also disclosed.
Owner:APPLIED MATERIALS INC

Electron beam exciter for use in chemical analysis in processing systems

ActiveUS20100032587A1Disparity will become so greatHigh electron energyCathode ray tubes/electron beam tubesRadiation therapyElectron sourceFluorescence
The present invention is directed to a gas line electron beam exciter, gas line electron beam excitation system and method for exciting a gas using an electron beam exciter. The electron beam exciter generally comprises a variable density electron source for generating a cloud of electrons in an electron chamber and a variable energy electron extractor for accelerating electrons from the electron chamber as an electron beam and into an effluent stream for fluorescing species in the effluent. The electron density of the electron beam is variably controlled by adjusting the excitation power applied to the variable density electron source. The electrons in the electron chamber reside at a reference electrical potential of the chamber, typically near ground electrical potential. The electron energy of the electron beam is variably controlled by adjusting an electrical potential across the variable energy electron extractor, which energizes the electrons through an extraction hole of the chamber and toward the extractor. The greater the difference in the electrical potential between the electron extractor and the electron source, the higher the energy imparted to the electrons in the electron beam. The excitation power applied to the electron source can be adjusted independently from the electron energy of the electron beam, thereby altering the electron density of the electron beam without changing the energy level of the electrons of the electron beam.
Owner:VERITY INSTR +1

Apparatus and method for exposing a substrate to UV radiation using asymmetric reflectors

Embodiments of the invention relate generally to an ultraviolet (UV) cure chamber for curing a dielectric material disposed on a substrate and to methods of curing dielectric materials using UV radiation. A substrate processing tool according to one embodiment comprises a body defining a substrate processing region; a substrate support adapted to support a substrate within the substrate processing region; an ultraviolet radiation lamp spaced apart from the substrate support, the lamp configured to transmit ultraviolet radiation to a substrate positioned on the substrate support; and a motor operatively coupled to rotate at least one of the ultraviolet radiation lamp or substrate support at least 180 degrees relative to each other. The substrate processing tool may further comprise one or more reflectors adapted to generate a flood pattern of ultraviolet radiation over the substrate that has complementary high and low intensity areas which combine to generate a substantially uniform irradiance pattern if rotated. Other embodiments are also disclosed.
Owner:APPLIED MATERIALS INC

Systems and methods for reducing the influence of plasma-generated debris on the internal components of an EUV light source

Systems and methods are disclosed for reducing the influence of plasma generated debris on internal components of an EUV light source. In one aspect, an EUV meteorology monitor is provided which may have a heater to heat an internal multi-layer filtering mirror to a temperature sufficient to remove deposited debris from the mirror. In another aspect, a device is disclosed for removing plasma generated debris from an EUV light source collector mirror having a different debris deposition rate at different zones on the collector mirror. In a particular aspect, an EUV collector mirror system may comprise a source of hydrogen to combine with Li debris to create LiH on a collector surface; and a sputtering system to sputter LiH from the collector surface. In another aspect, an apparatus for etching debris from a surface of a EUV light source collector mirror with a controlled plasma etch rate is disclosed.
Owner:ASML NETHERLANDS BV

Systems For Integrated Radiopharmaceutical Generation, Preparation, Transportation and Administration

An integrated radiopharmaceutical patient treatment system is disclosed including a patient support platform with an associated patient stimulus apparatus, an imager proximate the patient support platform, a radiopharmaceutical fluid delivery system for infusing a radiopharmaceutical fluid into a patient, a patient monitor to be associated with a patient, and an integrated system controller operably associated with the patient stimulus apparatus, imager, radiopharmaceutical fluid delivery system, and patient monitor to control and coordinate their operations. Within the patient treatment system the radiopharmaceutical fluid delivery system may be included comprising a radionuclide supply module, a radiopharmaceutical processing module, a quality control module, a patient injection module, and a controller. A hazardous fluid handling system including a docking station and a hazardous fluid transport device adapted to detachably dock with the docking station is further disclosed.
Owner:BAYER HEALTHCARE LLC

Methods and systems for providing illumination of a specimen for a process performed on the specimen

Methods and systems for providing illumination of a specimen for a process performed on the specimen are provided. One system configured to provide illumination of a specimen for a process performed on the specimen includes a laser configured to generate excitation light. The system also includes focusing optics configured to focus the excitation light to a plasma in an electrodeless lamp such that the plasma generates light. The system is also configured such that the light illuminates the specimen during the process.
Owner:KLA TENCOR TECH CORP

Laser-Driven Light Source

An apparatus for producing light includes a chamber and an ignition source that ionizes a gas within the chamber. The apparatus also includes at least one laser that provides energy to the ionized gas within the chamber to produce a high brightness light. The laser can provide a substantially continuous amount of energy to the ionized gas to generate a substantially continuous high brightness light.
Owner:HAMAMATSU PHOTONICS KK

Biomarker generator system

A biomarker generator system for producing approximately one (1) unit dose of a biomarker. The biomarker generator system includes a small, low-power particle accelerator (“micro-accelerator”) and a radiochemical synthesis subsystem having at least one microreactor and / or microfluidic chip. The micro-accelerator is provided for producing approximately one (1) unit dose of a radioactive substance, such as a substance that emits positrons. The radiochemical synthesis subsystem is provided for receiving the radioactive substance, for receiving at least one reagent, and for synthesizing the approximately one (1) unit dose of a biomarker.
Owner:BEST ABT INC

Method and apparatus for generating high output power gas discharge based source of extreme ultraviolet radiation and/or soft x-rays

An EUV photon source includes a plasma chamber filled with a gas mixture, multiple electrodes within the plasma chamber defining a plasma region and a central axis, a power supply circuit connected to the electrodes for delivering a main pulse to the electrodes for energizing the plasma around the central axis to produce an EUV beam output along the central axis, and a preionizer for ionizing the gas mixture in preparing to form a dense plasma around the central axis upon application of the main pulse from the power supply circuit to the electrodes. The EUV source preferably includes an ionizing unit and precipitator for collecting contaminant particulates from the output beam path. A set of baffles may be disposed along the beam path outside of the pinch region to diffuse gaseous and contaminant particulate flow emanating from the pinch region and to absorb or reflect acoustic waves emanating from the pinch region away from the pinch region. A clipping aperture, preferably formed of ceramic and / or Al2O3, for at least partially defining an acceptance angle of the EUV beam. The power supply circuit may generates the main pulse and a relatively low energy prepulse for homogenizing the preionized plasma prior to the main pulse. A multi-layer EUV mirror is preferably disposed opposite a beam output side of the pinch region for reflecting radiation along the central axis for output along the beam path of the EUV beam. The EUV mirror preferably has a curved contour for substantially collimating or focusing the reflected radiation. In particular, the EUV mirror may preferably have a hyperbolic contour.
Owner:USHIO DENKI KK

Particle beam irradiation system

It is an object of the present invention to provide a charged particle beam extraction method and particle beam irradiation system that make it possible to exercise intensity control over an extracted ion beam while a simple device configuration is employed. To accomplish the above object, there is provided a particle beam irradiation system comprising: a synchrotron for accelerating and extracting an charged particle beam; an irradiation apparatus for extracting the charged particle beam that is extracted from the synchrotron; first beam intensity modulation means for controlling the beam intensity of the charged particle beam extracted from the synchrotron during an extraction control period of an operation cycle of the synchrotron; and second beam intensity modulation means for controlling the beam intensity during each of a plurality of irradiation periods contained in the extraction control period of the operation cycle.
Owner:HITACHI LTD

Particle beam irradiation system

A particle beam irradiation system capable of ensuring a more uniform dose distribution at an irradiation object even when a certain time is required from output of a beam extraction stop signal to the time when extraction of a charged particle beam from an accelerator is actually stopped. The particle beam irradiation system comprises a synchrotron, an irradiation device including scanning magnets and outputting an ion beam extracted from the synchrotron, and a control unit. The control unit stops the output of the ion beam from the irradiation device in accordance with the beam extraction stop signal, controls the scanning magnets to change an exposure position in a state in which the output of the ion beam is stopped, and after the change of the exposure position, starts the output of the ion beam from the irradiation device again. The control unit further outputs a next beam extraction stop signal when an increment of dose integrated from the time of a preceding beam extraction stop signal as a start point reaches a setting dose stored in advance.
Owner:HITACHI LTD

Optical system for batwing distribution

A radiation distribution system designed to produce a batwing distribution. The system may be used with radiative sources emitting in the visible spectrum or in other spectra. The system comprises a specially shaped lens disposed over a radiative source, such as an LED, for example. The lens and source are arranged between two reflector bodies, both of which have an elongated reflective surface that faces the source. The reflector bodies each have two different reflective surfaces that face outward and away from each other. The lens and both reflective surfaces work in concert to redirect a portion of the emitted radiation to create the desired batwing distribution. Several sources may be arranged linearly between a single pair of reflector bodies on a common surface to create a linear array of sources. Likewise, multiple linear arrays may be combined to form a two-dimensional array. In the two-dimensional configuration, linear arrays of sources are disposed on both sides of a reflector body, so that both of the reflective surfaces are utilized.
Owner:IDEAL IND LIGHTING LLC

EUV light source

An apparatus and method for EUV light production is disclosed which may comprise a laser produced plasma (“LPP”) extreme ultraviolet (“EUV”) light source control system comprising a target delivery system adapted to deliver moving plasma initiation targets and an EUV light collection optic having a focus defining a desired plasma initiation site, comprising: a target tracking and feedback system comprising: at least one imaging device providing as an output an image of a target stream track, wherein the target stream track results from the imaging speed of the camera being too slow to image individual plasma formation targets forming the target stream imaged as the target stream track; a stream track error detector detecting an error in the position of the target stream track in at least one axis generally perpendicular to the target stream track from a desired stream track intersecting the desired plasma initiation site. At least one target crossing detector may be aimed at the target track and detecting the passage of a plasma formation target through a selected point in the target track. A drive laser triggering mechanism utilizing an output of the target crossing detector to determine the timing of a drive laser trigger in order for a drive laser output pulse to intersect the plasma initiation target at a selected plasma initiation site along the target track at generally its closest approach to the desired plasma initiation site. A plasma initiation detector may be aimed at the target track and detecting the location along the target track of a plasma initiation site for a respective target. An intermediate focus illuminator may illuminate an aperture formed at the intermediate focus to image the aperture in the at least one imaging device. The at least one imaging device may be at least two imaging devices each providing an error signal related to the separation of the target track from the vertical centerline axis of the image of the intermediate focus based upon an analysis of the image in the respective one of the at least two imaging devices. A target delivery feedback and control system may comprise a target delivery unit; a target delivery displacement control mechanism displacing the target delivery mechanism at least in an axis corresponding to a first displacement error signal derived from the analysis of the image in the first imaging device and at least in an axis corresponding to a second displacement error signal derived from the analysis of the image in the second imaging device.
Owner:ASML NETHERLANDS BV

Laser plasma source for extreme ultraviolet lithography using a water droplet target

A laser produced extreme ultraviolet (EUV) source based on a water droplet target has been implemented an auxiliary electrode system between the source and the first collector mirror. The auxiliary electrode system creates a repeller electric field, possibly a dc voltage imposed on the mirror that slows down and reverses the trajectories of ions from the source before they impact the collection mirror. The source modified according to the invention was evaluated with respect to the demands of EUV lithography and found to have much extended operational lifetimes. The spectral distribution of the generated radiation as well as the conversion efficiency into line radiation at 13 nm was determined. Long time measurements of the reflectivity of silicon / molybdenum multilayer mirrors for up to from 107 to 109 shots show the useful influence of the treatment of ions emitted from the source. Several methods of debris reduction were tested and discussed. Surface analysis of the treated multilayer mirrors of is presented. Long time measurements of the reflectivity of silicon / molybdenum multilayer mirrors for up to 109 shots show the advantage provided by this invention.
Owner:UNIV OF CENT FLORIDA RES FOUND INC

LED lamps and LED driver circuits for the same

LED lamp has LEDs aimed rearwards with either a concave mirror to the rear of each LED, or one concave mirror to the rear of two or more LEDs, collecting the light from the LEDs to form a forward projecting beam. LEDs may be high power types that require heatsinking. LED lamp may have a lens forward of each LED to collimate the radiation produced by the LEDs into a beam, where at least one lens has at least one aspheric curved surface. LED lamp may have a transparent reflective optic to collimate the radiation produced by each LED into a beam. For an inspection lamp, the LEDs typically have a peak wavelength of 395 to 415 naometers for seeing the area being irradiated but not so visible as to overwhelm fluorescence of fluorescent materials to be detected. Other wavelengths may be used. LED inspection lamp has a combination of LEDs of different wavelengths or a combination of at least one LED and at least one other light source such that the lamp produces radiation suitable for detection of materials to be detected and adequately illuminates the area being irradiated. LED lamp has LEDs that produce a beam of suitable radiation with a width of 10 degrees or less without additional optics. LED inspection lamp has head attached to a flexible member, with head serving as heatsink for one or more high power LEDs. Current regulator circuits are also disclosed.
Owner:ALLTEMP PROD CO LTD

EUV light source

A laser produced plasma (“LPP”) extreme ultraviolet (“EUV”) light source control system comprises a target delivery system adapted to deliver moving plasma initiation targets and an EUV light collection optic having a focus defining a desired plasma initiation site, a target tracking and feedback system comprising: at least one imaging device providing as an output an image of a target stream track, and a stream track error detector detecting an error in the position of the target stream track in at least one axis generally perpendicular to the target stream track from a desired stream track intersecting the desired plasma initiation site.
Owner:ASML NETHERLANDS BV

Extreme ultraviolet light source

The present invention provides a reliable, high-repetition rate, production line compatible high energy photon source. A very hot plasma containing an active material is produced in vacuum chamber. The active material is an atomic element having an emission line within a desired extreme ultraviolet (EUV) range. A pulse power source comprising a charging capacitor and a magnetic compression circuit comprising a pulse transformer, provides electrical pulses having sufficient energy and electrical potential sufficient to produce the EUV light at an intermediate focus at rates in excess of 5 Watts. In preferred embodiments designed by Applicants in-band, EUV light energy at the intermediate focus is 45 Watts extendable to 105.8 Watts.
Owner:ASML NETHERLANDS BV

High repetition rate laser produced plasma EUV light source

An EUV light source apparatus and method are disclosed, which may comprise a pulsed laser providing laser pulses at a selected pulse repetition rate focused at a desired target ignition site; a target formation system providing discrete targets at a selected interval coordinated with the laser pulse repetition rate; a target steering system intermediate the target formation system and the desired target ignition site; and a target tracking system providing information about the movement of target between the target formation system and the target steering system, enabling the target steering system to direct the target to the desired target ignition site. The target tracking system may provide information enabling the creation of a laser firing control signal, and may comprise a droplet detector comprising a collimated light source directed to intersect a point on a projected delivery path of the target, having a respective oppositely disposed light detector detecting the passage of the target through the respective point, or a detector comprising a linear array of a plurality of photo-sensitive elements aligned to a coordinate axis, the light from the light source intersecting a projected delivery path of the target, at least one of the which may comprise a plane-intercept detection device. The droplet detectors may comprise a plurality of droplet detectors each operating at a different light frequency, or a camera having a field of view and a two dimensional array of pixels imaging the field of view. The apparatus and method may comprise an electrostatic plasma containment apparatus providing an electric plasma confinement field at or near a target ignition site at the time of ignition, with the target tracking system providing a signal enabling control of the electrostatic plasma containment apparatus. The apparatus and method may comprise a vessel having and intermediate wall with a low pressure trap allowing passage of EUV light and maintaining a differential pressure across the low pressure trap. The apparatus and method may comprise a magnetic plasma confinement mechanism creating a magnetic field in the vicinity of the target ignition site to confine the plasma to the target ignition site, which may be pulsed and may be controlled using outputs from the target tracking system.
Owner:ASML NETHERLANDS BV

Large-area individually addressable multi-beam x-ray system and method of forming same

A structure to generate x-rays has a plurality of stationary and individually electrically addressable field emissive electron sources with a substrate composed of a field emissive material, such as carbon nanotubes. Electrically switching the field emissive electron sources at a predetermined frequency field emits electrons in a programmable sequence toward an incidence point on a target. The generated x-rays correspond in frequency and in position to that of the field emissive electron source. The large-area target and array or matrix of emitters can image objects from different positions and / or angles without moving the object or the structure and can produce a three dimensional image. The x-ray system is suitable for a variety of applications including industrial inspection / quality control, analytical instrumentation, security systems such as airport security inspection systems, and medical imaging, such as computed tomography.
Owner:THE UNIV OF NORTH CAROLINA AT CHAPEL HILL

Laser-driven light source

An apparatus for producing light includes a chamber and an ignition source that ionizes a gas within the chamber. The apparatus also includes at least one laser that provides energy to the ionized gas within the chamber to produce a high brightness light. The laser can provide a substantially continuous amount of energy to the ionized gas to generate a substantially continuous high brightness light.
Owner:HAMAMATSU PHOTONICS KK

Field emitter based electron source with minimized beam emittance growth

A system and method for limiting emittance growth in an electron beam is disclosed. The system includes an emitter element configured to generate an electron beam and an extraction electrode positioned adjacent to the emitter element to extract the electron beam out therefrom, the extraction electrode including an opening therethrough. The system also includes a meshed grid disposed in the opening of the extraction electrode to enhance intensity and uniformity of an electric field at a surface of the emitter element and an emittance compensation electrode (ECE) positioned adjacent to the meshed grid on the side of the meshed grid opposite that of the emitter element and configured to control emittance growth of the electron beam.
Owner:GENERAL ELECTRIC CO

LPP EUV light source

An apparatus and method is described for effectively and efficiently providing plasma irradiation laser light pulses in an LPP EUV light source which may comprise a laser initial target irradiation pulse generating mechanism irradiating a plasma initiation target with an initial target irradiation pulse to form an EUV generating plasma having an emission region emitting in-band EUV light; a laser plasma irradiation pulse generating mechanism irradiating the plasma with a plasma irradiation pulse after the initial target irradiation pulse so as to compress emission material in the plasma toward the emission region of the plasma. The plasma irradiation pulse may comprise a laser pulse having a wavelength that is sufficiently longer than a wavelength of the initial target irradiation pulse to have an associated lower critical density resulting in absorption occurring within the plasma in a region of the plasma defined by the wavelength of the plasma irradiation pulse sufficiently separated from an initial target irradiation site to achieve compression of the emission material, and the may compress the emission region. The laser plasma irradiation pulse may produce an aerial mass density in the ablating cloud of the plasma sufficient to confine the favorably emitting plasma for increased conversion efficiency. The deposition region for the plasma irradiation pulse may be is removed enough from the initial target surface so as to insure compression of the favorably emitting plasma. A high conversion efficiency laser produced plasma extreme ultraviolet (“EUV”) light source may comprise a laser initial target irradiation pulse generating mechanism irradiating a plasma initiation target with a target irradiation pulse to form an EUV generating plasma emitting in-band EUV light; a plasma tamper substantially surrounding the plasma to constrain the expansion of the plasma.
Owner:ASML NETHERLANDS BV

Charged particle irradiation system

ActiveUS7838855B2Improving the accuracy in irradiation position of a charged particle beamReduce the possibilityElectrode and associated part arrangementsMaterial analysis by optical meansExcitation currentParticle physics
A charged particle irradiation system that positions the beam at a target position to avoid irradiation of normal tissue includes an acceleration system 6 for extracting a charged particle beam, scanning magnets 24 and 25, and charged particle beam position monitors 26 and 27. On the basis of signals received from the charged particle beam position monitors 26 and 27, the control unit 70 calculates a beam position at a target position and then controls the scanning magnets 24 and 25 so that the charged particle beam is moved to a desired irradiation position at the target position. The control unit 70 corrects the value of an excitation current applied to each of the scanning magnets 24 and 25 on a specified cycle basis on the basis of information about the position and the angle of the charged particle beam.
Owner:HITACHI LTD

Extreme ultraviolet light source device, laser light source device for extreme ultraviolet light source device, and method of adjusting laser light source device for extreme ultraviolet light source device

An EUV light source device properly compensates the wave front of laser beam which is changed by heat. A wave front compensator and a sensor are provided in an amplification system which amplifies laser beam. The sensor detects and outputs changes in the angle (direction) of laser beam and the curvature of the wave front thereof. A wave front compensation controller outputs a signal to the wave front compensator based on the measurement results from the sensor. The wave front compensator corrects the wave front of the laser beam to a predetermined wave front according to an instruction from the wave front compensation controller.
Owner:GIGAPHOTON

Surface plasmon antenna with propagation edge and near-field light generating element

Provided is a surface plasmon antenna that can be set so that the emitting position on the end surface of the plasmon antenna where near-field light is emitted is located sufficiently close to the end of a magnetic pole. The surface plasmon antenna comprises an edge having a portion for coupling with a light in a surface plasmon mode. The edge is provided for propagating surface plasmon excited by the light and extends from the portion to a near-field light generating end surface that emits near-field light. The edge for propagating surface plasmon is a very narrow propagation region. Therefore, the near-field light generating end surface, which appears as a polished surface processed through polishing in the manufacturing of the plasmon antenna, can be made a shape with a very small size, and further can be set so that surface plasmon propagates to reach the end surface reliably.
Owner:TDK CORPARATION

Particle beam irradiation system

It is an object of the present invention to provide a charged particle beam extraction method and particle beam irradiation system that make it possible to exercise intensity control over an extracted ion beam while a simple device configuration is employed. To accomplish the above object, there is provided a particle beam irradiation system comprising: a synchrotron for accelerating and extracting an charged particle beam; an irradiation apparatus for extracting the charged particle beam that is extracted from the synchrotron; first beam intensity modulation means for controlling the beam intensity of the charged particle beam extracted from the synchrotron during an extraction control period of an operation cycle of the synchrotron; and second beam intensity modulation means for controlling the beam intensity during each of a plurality of irradiation periods contained in the extraction control period of the operation cycle.
Owner:HITACHI LTD

Multi-Field Charged Particle Cancer Therapy Method and Apparatus

The invention relates generally to treatment of solid cancers. More particularly, the invention relates to a multi-field charged particle cancer therapy method and apparatus coordinated with negative ion beam creation, ion beam focusing, charged particle acceleration, patient rotation, and / or patient respiration. Preferably, the charged particle therapy is performed on a patient in a partially immobilized and repositionable position. Proton delivery is preferably timed to patient respiration via control of charged particle beam injection, acceleration, and / or targeting methods and apparatus.
Owner:BALAKIN VLADIMIR EGOROVICH

Method and apparatus for EUV plasma source target delivery

An EUV plasma formation target delivery system and method is disclosed which may comprise: a target droplet formation mechanism comprising a magneto-restrictive or electro-restrictive material, a liquid plasma source material passageway terminating in an output orifice; a charging mechanism applying charge to a droplet forming jet stream or to individual droplets exiting the passageway along a selected path; a droplet deflector intermediate the output orifice and a plasma initiation site periodically deflecting droplets from the selected path, a liquid target material delivery mechanism comprising a liquid target material delivery passage having an input opening and an output orifice; an electromotive disturbing force generating mechanism generating a disturbing force within the liquid target material, a liquid target delivery droplet formation mechanism having an output orifice; and / or a wetting barrier around the periphery of the output orifice.
Owner:ASML NETHERLANDS BV

Particle beam irradiation system

It is an object of the present invention to provide a charged particle beam extraction method and particle beam irradiation system that make it possible to exercise intensity control over an extracted ion beam while a simple device configuration is employed. To accomplish the above object, there is provided a particle beam irradiation system comprising: a synchrotron for accelerating and extracting an charged particle beam; an irradiation apparatus for extracting the charged particle beam that is extracted from the synchrotron; first beam intensity modulation means for controlling the beam intensity of the charged particle beam extracted from the synchrotron during an extraction control period of an operation cycle of the synchrotron; and second beam intensity modulation means for controlling the beam intensity during each of a plurality of irradiation periods contained in the extraction control period of the operation cycle.
Owner:HITACHI LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products