Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

10928results about "Piezoelectric/electrostrictive/magnetostrictive devices" patented technology

System and method for telemetrically providing intrabody spatial position

A telemetry system and method for providing spatial positioning information from within a patient's body are disclosed. The system includes at least one implantable telemetry unit which includes (a) at least one first transducer being for converting a power signal received from outside the body, into electrical power for powering the at least one implantable telemetry unit; (b) at least one second transducer being for receiving a positioning field signal being received from outside the body; and (c) at least one third transducer being for transmitting a locating signal transmittable outside the body in response to the positioning field signal.
Owner:REMON MEDICAL TECH

Medical and/or dental instrument with oscillatory rod

The invention relates to a medical or dental-medical treatment instrument (1) having a grip sleeve (11), an oscillatory rod (13) which extends longitudinally in the grip sleeve (11) and is mounted therein in a radially or also axially elastically yielding manner, and an oscillation generator (31) for transmitting oscillations to the oscillatory rod (13). In order to attain a compact construction, the oscillatory rod (13) is of a base part and an attachment part which is fixed on the base part.
Owner:KALTENBACH & VOIGT GMBH & CO

Shaft mounted energy harvesting for wireless sensor operation and data transmission

A device for monitoring a rotating shaft is provided. The device measures strain in the shaft and provides angular velocity and torque in the shaft. The device includes a sensor, sensor conditioning circuitry, a microprocessor, and a transmitter, all located on a rotating shaft. The device obtains power by harvesting mechanical energy of the rotating shaft itself. Coils are provided rotating with the shaft and permanent magnets are mounted adjacent the rotating shaft so electrical energy is induced in the coils as they rotate through the magnetic field of the permanent magnets. A battery or capacitor is connected to the coils for storing energy. A microprocessor is connected to the sensors, the storage device, and the transmitter for managing power consumption and for monitoring the amount of electrical energy stored in the storage device and for switchably connecting the storage device to the transmitter when the stored energy exceeds a threshold.
Owner:LORD CORP

Instrumented sports apparatus and feedback method

An instrumented sports apparatus includes a closely spaced array of discrete sensor elements coupled to a contact surface thereof for converting a contact force between the contact surface and an object into a plurality of discrete output signals. The signals are processed and information based thereon generated, which is representative of one or more parameters of interest. In an exemplary embodiment, as instrumented golf club displays information such as club head speed, club head angle, and club head elevation upon impact with a golf ball, permitting the golfer to adjust his swing on the next stroke. Since the instrumentation and display are entirely self-contained in the club, a golfer is not constrained in the use of the club and may enjoy the benefits thereof during play on a golf course.
Owner:MARSH DONALD JAMES +1

Acoustic resonator performance enhancement using alternating frame structure

Disclosed is an acoustic resonator that includes a substrate, a first electrode, a layer of piezoelectric material, a second electrode, and an alternating frame region. The first electrode is adjacent the substrate, and the first electrode has an outer perimeter. The piezoelectric layer is adjacent the first electrode. The second electrode is adjacent the piezoelectric layer and the second electrode has an outer perimeter. The alternating frame region is on one of the first and second electrodes.
Owner:AVAGO TECH INT SALES PTE LTD

Method of Fabricating High Aspect Ratio Transducer Using Metal Compression Bonding

A method and apparatus are described for fabricating a high aspect ratio MEMS device by using metal thermocompression bonding to assemble a reference wafer (100), a bulk MEMS active wafer (200), and a cap wafer (300) to provide a proof mass (200d) formed from the active wafer with bottom and top capacitive sensing electrodes (115, 315) which are hermetically sealed from the ambient environment by sealing ring structures (112 / 202 / 200a / 212 / 312 and 116 / 206 / 200e / 216 / 316).
Owner:FREESCALE SEMICON INC

Energy harvesting device including MEMS composite transducer

An energy harvesting device includes a MEMS composite transducer. The MEMS composite transducer includes a substrate. Portions of the substrate define an outer boundary of a cavity. A MEMS transducing member includes a beam having a first end and a second end. The first end is anchored to the substrate and the second end cantilevers over the cavity. A compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member. A second portion of the compliant membrane is anchored to the substrate. The compliant member is configured to be set into oscillation by excitations produced externally relative to the energy harvesting device.
Owner:EASTMAN KODAK CO

System and method for directing and monitoring radiation

A system for monitoring, directing and controlling the dose of radiation in a medical procedure for irradiating a specific region of a patient's body. In its generic form, the system includes at least one sensor being implantable within, or in proximity to, the specific region of the patient's body, the at least one sensor being for sensing at least one parameter associated with the radiation. The system further includes a relaying device which is in communication with the sensor(s). The relaying device serves for relaying the information outside of the patient's body.
Owner:REMON MEDICAL TECH

Method and system to synchronize acoustic therapy with ultrasound imaging

Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.
Owner:UNIV OF WASHINGTON

Ultrasound transducer array

This invention relates to an ultrasonic transducer array for non-destructive imaging and inspection of materials, suitable for applications such as bio-medical imaging. According to the invention, the transducer has at least one electrode comprising an array of electrode elements, wherein the elements are not separated by a grooves or kerfs. The grooveless transducer design simplifies transducer construction and permits very high operating frequencies, and hence very high resolution. In one embodiment suitable for producing real-time high resolution 3-dimension images, the invention provides a hybrid transducer comprising two opposed electrodes, one electrode being a grooveless linear array and the second electrode being a grooved linear phased array.
Owner:QUEENS UNIV OF KINGSTON

MEMS vibrating structure using an orientation dependent single-crystal piezoelectric thin film layer

A micro-electrical-mechanical system (MEMS) vibrating structure includes a carrier substrate, a first anchor, a second anchor, a single crystal piezoelectric body, and a conducting layer. The first anchor and the second anchor are provided on the surface of the carrier substrate. The single-crystal piezoelectric body is suspended between the first anchor and the second anchor, and includes a uniform crystalline orientation defined by a set of Euler angles. The single-crystal piezoelectric body includes a first surface parallel to and facing the surface of the carrier substrate on which the first anchor and the second anchor are formed and a second surface opposite the first surface. The conducting layer is inter-digitally dispersed, and is formed on the second surface of the single-crystal piezoelectric body. The first surface of the single-crystal piezoelectric body is left exposed.
Owner:QORVO US INC

Ultrasonic rod waveguide-radiator

The present invention comprises an ultrasonic resonant rod waveguide-radiator with at least three cylindrical sections, one of which is an entrance section having a planar entrance surface and another of which is an exit section having a planar exit surface, and at least two sections having a variable cross-section. The cylindrical sections and sections of variable cross-section are arranged in alternating fashion and connected to each other acoustically rigidly. The dimensions of the cylindrical sections and the sections of variable cross-section are selected so that the gain of the waveguide-radiator is significantly greater than unity and the strain created by passage of ultrasonic waves through the waveguide-radiator is minimized, increasing the operational life of the waveguide-radiator and maximizing the amount of useful energy transmitted by the waveguide-radiator.
Owner:INDAL SONOMECHANICS +1

Structure of a micro electro mechanical system

A structure of a micro electro mechanical system (MEMS) for a planar display apparatus is described. The MEMS structure used as a transmissible or reflective display device has a shielding electrode and a control electrode. The shielding electrode has a low stress electrode and a high stress electrode. The high stress electrode connected to the low stress electrode is a movable element. The control electrode is located below the high stress electrode. The control electrode attracts the high stress electrode when a voltage is applied to the control electrode. The high stress electrode deforms and the position of the low stress electrode is altered.
Owner:SNAPTRACK

Data input device and portable electronic device

Embodiments include a data input device and a portable electronic device including such a data input device. The data input device may include a key sensing mechanism and a solid material layer provided above the key sensing mechanism. The solid material layer may include a least one cavity that may go through the whole of the solid material layer. The cavity may include an electroactive polymer and two electrodes for providing a key that may be changed in shape based on an applied voltage. One embodiment may also allows the registering of inputs in the key sensing mechanism based on a user pressing down the electroactive polymer on the key sensing mechanism.
Owner:SONY CORP

Devices, methods, and systems for harvesting energy in the body

In some embodiments, the power generator for converting mechanical energy to electrical energy is described may include a compressible element adapted and configured to be placed in an environment having a variable compressive force such as varying ambient pressures. The compressible element may be compressed by a force applied by the variable pressure to the compressible element. The power generator may further include a transducer that may be coupled to the compressible element and that may convert mechanical energy from the compression of the compressible element to electrical energy. In some embodiments, the power generator may be adapted to be an implantable power generator for converting mechanical energy from a patient to electrical energy, such that the compressible element adapted and configured to be placed between two adjacent tissue layers of the patient and to be compressed by a force applied from the two adjacent tissue layers to the compressible element.
Owner:AUTONOMIC TECH INC

Stressed material and shape memory material MEMS devices and methods for manufacturing

Disclosed is a MEMS device which comprises at least one shape memory material such as a shape memory alloy (SMA) layer and at least one stressed material layer. Examples of such MEMS devices include an actuator, a micropump, a microvalve, or a non-destructive fuse-type connection probe. The device exhibits a variety of improved properties, for example, large deformation ability and high energy density. Also provided is a method of easily fabricating the MEMS device in the form of a cantilever-type or diaphragm-type structure.
Owner:PALO ALTO RES CENT INC

Drive unit for medical devices

The invention relates to a drive unit for a medical device such as an insulin pump, lancing device, or test strip magazine. The drive unit comprises an actuator for charging a mechanical energy storage element. The actuator oscillates and executes travel strokes which are transmitted by means of a step-up element to a nonreturn rotor or traveler for prestressing the mechanical energy storage element and driving a movement element.
Owner:ROCHE DIABETES CARE INC

Electronic device and circuit for providing tactile feedback

A circuit (800) for controlling at least one piezoelectric actuator (142) includes a piezoelectric drive circuit (802) that generates unidirectional voltage drive signal, also referred to as Vout, at node (804). The piezoelectric actuator drive circuit (802) includes a boost switcher circuit or charging circuit (806), a buck switcher circuit or pulsed current sink discharge circuit (808) and a control signal generating circuit (810) that receives an input control signal (812) from, for example, a keyboard processor or other suitable processor (604) indicating that the device has requested generation of haptic feedback utilizing the piezoelectric actuator (142). The control signal generating circuit (810) provides at least two pulse-with-modulated control signals, one to control the charging circuit and one to control the discharging circuit to produce the unidirectional voltage drive signal, that in one example is a raised cosine drive signal (904).
Owner:GOOGLE TECH HLDG LLC

High-frequency oscillation element, magnetic information recording head, and magnetic storage device

A high-frequency oscillation element has a ferromagnetic material which exhibits thermal fluctuation of magnetization and generates spin fluctuations in conduction electrons, a nonmagnetic conductive material which is laminated on the first magnetic material and transfers the conduction electrons, a magnetic material which is laminated on the nonmagnetic conductive material, generates magnetic resonance upon injection of the conduction electrons, and imparts magnetic dipole interaction to magnetization of a neighboring magnetic area by means of magnetic vibration stemming from the magnetic resonance, a first electrode electrically coupled with the first magnetic material, and a second electrode electrically coupled with the second magnetic material.
Owner:KK TOSHIBA

Acoustic reflector for a BAW resonator providing specified reflection of both shear waves and longitudinal waves

A BAW resonator includes a piezoelectric layer, a first electrode, a second electrode, a substrate, and an acoustic reflector disposed between the substrate and the second electrode. The acoustic reflector has a plurality of layers. A performance of the acoustic reflector is determined by its reflectivity for a longitudinal wave existing in the BAW resonator at the resonance frequency of the BAW resonator and by its reflectivity for a shear wave existing in the BAW resonator at the resonance frequency of the BAW resonator. The layers of the acoustic reflector and layers disposed between the acoustic reflector and the piezoelectric layer are selected, with reference to their number, material, and thickness, such that the transmissivity for the longitudinal wave and the transmissivity for the shear wave in the area of the resonance frequency is smaller than −10 dB.
Owner:AVAGO TECH INT SALES PTE LTD

Digital microfluidics based apparatus for heat-exchanging chemical processes

The present invention provides an apparatus and method for performing heat-exchanging reactions on an electro wetting-based micro fluidic device. The apparatus provides one or multiple thermal contacts to an electro wetting-based device, where each thermal contact controls the part of the electro wetting-based device it communicates with to a designed temperature. The electrowetting-based device can be used to create, merge and mix liquids in the format of droplets and transport them to different temperature zones on the micro fluidic device. The apparatus and methods of the invention can be used for heat-exchanging chemical processes such as polymerase chain reaction (PCR) and other DNA reactions, such as ligase chain reactions, for DNA amplification and synthesis, and for real-time PCR.
Owner:DIGITAL BIOSYST

Microfabricated system for magnetic field generation and focusing

A method of forming, in or on a Si substrate, planar micro-coils with coil windings of high aspect ratio (>3) and a wide variety of geometric shapes. The micro-coils may be formed on a Si substrate and be embedded in a dielectric, or they may be formed in trenches within a Si substrate. The micro-coils may have field enhancing ferromagnetic pillars rising above the micro-coil plane, formed at positions of maximum magnetic field strength and the micro-coils may also include magnetic layers formed beneath the substrate and contacting the pillars to form a substantially closed pathway for the magnetic flux. The substrate may be thinned to membrane proportions. These micro-coils produce strong magnetic fields with strong field gradients and can be used in a wide variety of processes that involve the exertion of strong magnetic forces at small distances or the creation of magnetic wells for trapping and manipulating small particles.
Owner:AGENCY FOR SCI TECH & RES +1

Systems and methods for delivering ultrasound energy at an output power level that remains essentially constant despite variations in transducer impedance

Systems and methods deliver ultrasound energy to an ultrasound transducer having an impedance subject to variations. The systems and methods electrically couple an ultrasound generator to the ultrasound transducer to deliver ultrasound energy. The systems and methods deliver ultrasound energy to the ultrasound transducer at a set output frequency and at an output power level that remains essentially constant, despite variations in the impedance, based upon preprogrammed rules.
Owner:TIMI 3 SYST

Temperature compensated oscillator including MEMS resonator for frequency control

Disclosed is an oscillator that relies on redundancy of similar resonators integrated on chip in order to fulfill the requirement of one single quartz resonator. The immediate benefit of that approach compared to quartz technology is the monolithic integration of the reference signal function, implying smaller devices as well as cost and power savings.
Owner:RGT UNIV OF CALIFORNIA

Medical ultrasound system and handpiece and methods for making and tuning

Several embodiments of medical ultrasound handpieces are described each including a medical ultrasound transducer assembly. An embodiment of a medical ultrasound system is described, wherein the medical ultrasound system includes a medical ultrasound handpiece having a medical ultrasound transducer assembly and includes an ultrasonically-vibratable medical-treatment instrument which is attachable to a distal end of the transducer assembly. An embodiment of a medical ultrasound system is described, wherein the medical ultrasound system has a handpiece including a medical ultrasound transducer assembly and including a housing or housing component surrounding the transducer assembly. A method for tuning a medical ultrasound handpiece includes machining at least a distal non-threaded portion of an instrument-attachment stud of the transducer assembly to match a measured fundamental frequency to a desired fundamental frequency to within a predetermined limit. A method for making a medical ultrasound transducer assembly determines acceptable gains for gain stages of the transducer assembly.
Owner:CILAG GMBH INT

Haptic feedback controller, method of controlling the same, and method of transmitting messages that uses a haptic feedback controller

A haptic feedback controller 100 according to the present invention is a haptic feedback controller that controls a controlled appliance and includes a base 110, a cap 120, a piezoelectric motor 130, a rotation control device, and a rotational state detecting device. According to haptic feedback controller 100 of the present invention, the piezoelectric motor 130 that can produce a large torque even when rotating at low speed is used, so that even when the cap 120 is rotated at low speed, sufficiently large haptic feedback can be applied to the cap 120. Also, since the base 110 and the cap 120 are respectively fixed to the stator 140 and the rotor 150 of the piezoelectric motor 130, there is no backlash. As a result, according to the present invention it is possible to provide a haptic feedback controller for which there is no loss in the ability to express haptic feedback, so that a wide variety of haptic feedback can be expressed.
Owner:FUKOKU CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products