Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1428results about "Inflated body pressure measurement" patented technology

Instrumented sports apparatus and feedback method

An instrumented sports apparatus includes a closely spaced array of discrete sensor elements coupled to a contact surface thereof for converting a contact force between the contact surface and an object into a plurality of discrete output signals. The signals are processed and information based thereon generated, which is representative of one or more parameters of interest. In an exemplary embodiment, as instrumented golf club displays information such as club head speed, club head angle, and club head elevation upon impact with a golf ball, permitting the golfer to adjust his swing on the next stroke. Since the instrumentation and display are entirely self-contained in the club, a golfer is not constrained in the use of the club and may enjoy the benefits thereof during play on a golf course.
Owner:MARSH DONALD JAMES +1

Diagnostic method and apparatus using light

A diagnosis method and apparatus for measuring blood hemoglobin concentration, oxygen saturation, pulse rate, respiration rate, or degree of aging of blood vessels using light includes an input / output unit for receiving a command for measurement from a user and for providing information on the result of a measurement to the user; a control unit for receiving the command for measurement from the input / output unit and for generating a control signal; a light generating unit for generating at least two light beams for measurement according to the control signal; a light receiving unit for receiving the light beams transmitted through an object that is subject to measurement and for converting the received light beams into electrical signals; and a data processing unit for processing the electrical signals received from the light receiving unit and for outputting information on the result of a predetermined measurement.
Owner:SAMSUNG ELECTRONICS CO LTD

Systems and methods for monitoring athletic performance

The invention relates to devices and methods for monitoring one or more athletic performance characteristic of a user. An example apparatus includes a sensing unit adapted to be attachable to a shoe of a user, the sensing unit including a first sensor adapted to monitor an movement of a foot of the user while the user is in motion, the first sensor comprising a gyroscopic sensor, processing means for determining a first performance characteristic of the user based upon an output from the first sensor, the first performance characteristic comprising a foot strike location of a foot of the user upon striking a ground surface, and transmitting means for transmitting a data package representative of the performance characteristic to a remote receiver.
Owner:NEW BALANCE ATHLETICS

Method of fabricating silicon capacitive sensor

Manufacturing all-silicon force sensors, such as capacitive pressure sensors (100, 200) that have long term stability and good linear sensitivity, and can be built into of a pneumatic tire. The sensors include buried electrical feedthrough (112b) to provide an electrical connection into a sealed silicon cavity (108). The buried feedthrough consists of a conductor (112b) in a shallow groove (106) in a substrate (102), communicating between the sensing cavity (108) and an external contact area (110). The sensor designs also feature a method for forming a silicon-to-silicon fusion bond (SFB) wherein at least one of the two surfaces (152, 252) to be has a tough silicon surface unsuitable for good SFB joints because it was bonded heavily boron-doped by means of diffusion. The method of this invention includes preparing each doped surface (152, 252) for SFB by polishing the surface with a Chemical-Mechanical Polishing (CMP) process. The sensor designs can also include optional reference capacitors (141, 241) on the same chip (100, 200) as the sensing capacitor (140, 240). The reference capacitors (141, 241) are insensitive to pressure (force), but respond to ambient temperature changes in the same way as the sensing capacitor. Suitable external interface circuits can utilize the reference capacitors (141, 241) to pull out the majority of ambient temperature effects.
Owner:CASE WESTERN RESERVE UNIV

Integrated micro electro-mechanical system and manufacturing method thereof

In the manufacturing technology of an integrated MEMS in which a semiconductor integrated circuit (CMOS or the like) and a micro machine are monolithically integrated on a semiconductor substrate, a technology capable of manufacturing the integrated MEMS without using a special process different from the normal manufacturing technology of a semiconductor integrated circuit is provided. A MEMS structure is formed together with an integrated circuit by using the CMOS integrated circuit process. For example, when forming an acceleration sensor, a structure composed of a movable mass, an elastic beam and a fixed beam is formed by using the CMOS interconnect technology. Thereafter, an interlayer dielectric and the like are etched by using the CMOS process to form a cavity. Then, fine holes used in the etching are sealed with a dielectric.
Owner:HITACHI ASTEMO LTD

Method and apparatus for graphical display of a condition in a building system with a mobile display unit

A method and apparatus uses a stored model of a building system to render an image showing a condition sensed of the building control system on a mobile display unit. The mobile display unit may be wirelessly integrated into the building control system. The mobile display unit may operate based upon voice commands and / or eye tracking.
Owner:SIEMENS IND INC

Vehicle wheel information supply device and wheel tire abnormality indicating device

A vehicle wheel information supply device for supplying wheel information relating to a state of a wheel of a vehicle, including a wheel state detector for detecting the state of the wheel, a wheel information generator for generating the wheel information relating to the state of the wheel, on the basis of an output of the wheel state detector, a transmitter for transmitting the wheel information, and a receiver which receives the wheel information transmitted by the transmitter, the wheel state detector, the wheel information generator and the transmitter being disposed on the wheel while the receiver being disposed on a body of said vehicle, wherein the wheel information generator is capable of selectively generating different kinds of wheel information having respective different volumes, and at least one of the wheel information generator and the transmitter operates in a manner depending upon at least one parameter indicative of the state of the wheel, which at least one parameter is detected by the wheel state detector.
Owner:TOYOTA JIDOSHA KK +2

Wheel measuring system, wheel measuring method and wheel-related product sales method

InactiveUS20030187556A1Eliminate needBusiness can be proceeded more smoothlyInflated body pressure measurementTransmission systemsDisplay deviceEngineering
A data processor (13) has a receiver for receiving measurement data on tires (21, 22) attached to an automobile (2) from a tire gauge (11, 12), and a data displaying portion for processing and displaying the received measurement data on a display (326) in a predetermined form. The received measurement data includes pressure value and tread depth of the tires (21, 22). The tread depth is measured on three points of inside, middle and outside in width direction of a tread surface of the tire. The received data is displayed in graphic representing positions of the tires (21, 22) of the automobile (2) and in a graph coloured corresponding to the measurement value.
Owner:MITUTOYO CORP

Method for processing information in a tire pressure monitoring system

A method of processing information in a tire pressure monitoring system includes the steps of: establishing a reference temperature; determining a pressure warning threshold at the reference temperature; measuring gauge pressure and gauge temperature within a tire cavity; correcting the gauge pressure to a filtered pressure value at the reference temperature using the Ideal Gas Law; and comparing the filtered pressure value against the pressure warning threshold to determine the necessity for a warning signal. In an advanced form of the invention, the method includes determining a pressure leak rate; predicting the time interval that the filtered pressure value will cross the pressure warning threshold at the leak rate and generating progressive warnings to the driver over the time interval. Fuzzy logic is used to quantify the probability of a warning state for each data point, allow for measurement error; and report the state of maximum probability to minimize the occurrence of false warning. A warning utility function is derived based upon a combination of the filtered pressure and leak rate.
Owner:THE GOODYEAR TIRE & RUBBER CO

Battery testers with secondary functionality

An electronic vehicle tester includes a battery tester configured to measure a parameter of a battery of a vehicle. A tire tester is configured to receive a parameter of a tire of the vehicle. A wireless receiver can be configured to receive pressure information from a transmitter associated with a tire of a vehicle.
Owner:MIDTRONICS

Smart active tyre pressure optimising system

Smart Active Tyre Pressure Optimising System [TPOS]102 is a highly time sensitive design and technique that acts instantaneously in sensing and controlling the tire pressure particularly in imminent and inevitable critical driving situations to reduce emergency & high speed breaking distance, mitigate—loss of traction, hydroplaning, roll over, loss of stability, over & under steering, break failure, loss of control due to puncture by smartly sensing, perform context aware computing and directing the Tyre Pressure Control Units [TPCU]104 to instantaneously control the tyre pressure in right time with right pressure on right tyres thereby actively controlling the footprint and sidewall deformation rate to enhance traction & stability simultaneously sustaining drivability or steerability ultimately to avoid or reduce the impact of collusion and overcome or mitigate critical situations for protecting the vehicles, occupants, pedestrians and other objects around or on the way; also according to design, configurations and scenarios the system instantaneously optimises the tyre pressure on all tyres for further safe driving till next restoration else restores the pressure to optimum preset value utilising inbuilt reservoir or other external restoration systems immediately after the vehicle overcomes the critical situation to continue with safe and comfortable driving. In critical situations TPOS performs sensing, pre computing, current computing for controlling the tire pressure during critical situation, post computing to optimise tire pressure after overcoming accordingly. TPOS 102 utilise smart and adaptive closed loop processing algorithm with predetermined and tested lookup table to instantaneously check and compare the effects between predetermined and tested real world scenarios to the actual real world scenarios for actively sensing, computing and controlling the tire pressure accordingly to mitigate the critical situations. The controlling of tyre pressure is computed mainly based on parameters comprising of sensor system, vehicle safety and stability systems, nature of breaking & break force distribution, tires upper & lower cut-off pressure values, sensing reservoirs and tires internal & external pressure, temperature, moisture, humidity, wheel & tire specifications, vehicle & wheel speed, acceleration & deceleration, vehicle orientation & axial rotation, transverse motion & lateral acceleration, tires position or angle of attack, load & torque distribution, tire traction, steering position, cornering effects, change in Centre of gravity, over & under steering, hydroplaning, sensing road conditions, etc and to further enhance the efficiency, the system interoperates with vehicles existing safety and stability systems like ABS, EBD, ESC, TCS, Rollover mitigation systems, ECU, BA, Precrash systems, suspension & vertical dynamics, radar assisted auto breaking, cruise control system, aerodynamics & airbrakes etc. Other aspects of present invention are controlling the tire temperature according to environmental temperature, moisture and humidity thereby to enhance traction and vary tire pressure according to change in centre of gravity & load, driving modes—comfort, standard and sports modes.
Owner:MUTHUKUMAR PRASAD

Non-conformance monitoring and control techniques for an implantable medical device

Disclosed is a method and apparatus for determining whether an implantable drug delivery device is conforming to the performance requirements of the device or the needs of the patient. The system includes an implantable drug delivery device having stored therein at least one drug, a nonconformance monitor module monitoring pump parameters, an external programmer in telemetric communication with the implantable drug delivery device and having a nonconformance management module for determining whether the the device is conforming to performance requirements, and to determine what action should be taken if non-conformance is determined. If the nonconformance management module identifies nonconformance, it determines what action should be taken for the particular non-conformance. The nonconformance management module will either invoke a pump programming change, or schedule and appointment or notify the patient that a non-programming change should be made.
Owner:MEDTRONIC INC

Battery testers with secondary functionality

An electronic vehicle tester includes a battery tester configured to measure a parameter of a battery of a vehicle. A tire tester is configured to receive a parameter of a tire of the vehicle. A wireless receiver can be configured to receive pressure information from a transmitter associated with a tire of a vehicle.
Owner:MIDTRONICS

Monitoring hit count for impact events

The systems and methods are provided for monitoring the forces and impacts to an object. The systems and method disclosed herein can be used to monitor forces and impacts to a human subject. In some implementations, the system can be disposed into conformal electronics that can be coupled directly to an object or disposed of other objects such as clothing and protective gear. The system can include a storage module to allow for data to be reviewed and analyzed. In some implementations, the system can also include an indicator. In some implementations, the indicator can be used to display real time analysis of impacts made by the system.
Owner:MC 10 INC

Activity classification in a multi-axis activity monitor device

An activity classification device is disclosed. The activity classification device comprises one or more motion sensors and a memory configured to receive signals from the one or more motion sensors. The device further includes a processor in communication with the memory. Finally, the device includes a classification algorithm executed by the processor, the classification algorithm for identifying activities that a user is engaged in. The memory may also record a user's activity log, calorie count and an RF module, which transmits the recorded data to a host either upon request or continuously.
Owner:INVENSENSE

Apparatuses and methods for evaluating a person for a sleep system

A method for evaluating a person for a sleep system, the method including: while the person is not positioned on an evaluating member, adjusting a pressure of a comfort layer inflatable member disposed within a comfort layer of the evaluating member to an initial comfort value; positioning the person on the evaluating member in a first position; while the person is positioned on the evaluating member in the first position, measuring a pressure of the comfort layer inflatable member as a first measured comfort value; calculating a difference between the first measured comfort value and the initial comfort value as comfort pressure 1; calculating a first optimal pressure level for the comfort layer inflatable member using comfort pressure 1; and recommending a sleep support member for the person using the calculated first optimal pressure level for the comfort layer inflatable member and using data measuring quality of sleep.
Owner:KINGSDOWN INC

Tire inspection apparatus and method

Described is an anomaly detector apparatus 10 for detecting an anomaly in a tire comprising: a source of coherent light 18 to shine the light 27 directly onto the tire surface 24 and the light being reflected 32 from the tire; a stressing apparatus 12 which can stress the tire; a reflected light receiving apparatus 40 for receiving the light 32 reflected directly from the tire surface 24 when the tire is in a stressed and unstressed condition; a processor 44 which compares images of reflected light from the reflected light receiving apparatus 40 when the tire is stressed and unstressed thereby ascertaining an anomaly in the tire and generates an output from the comparison; and a display apparatus 46 electronically connected to the processor for displaying the output from the processor.
Owner:RAVEN ENG

Exposed Pad Backside Pressure Sensor Package

A method and apparatus are described for fabricating an exposed backside pressure sensor (30) which protects interior electrical components (37) formed on a topside surface of a pressure sensor transducer die (31) from corrosive particles using a protective gel layer (38) and molding compound (39), but which vents a piezoresistive transducer sensor diaphragm (33) formed on a backside of the pressure sensor transducer die (31) through a vent hole (42) formed in an exposed die flag (36), enabling the sensor diaphragm (33) to directly sense pressure variations without the influence of a protective gel.
Owner:NORTH STAR INNOVATIONS

Tire air pressure monitoring system

Provided is a tire air pressure monitoring system capable of grasping the tire positions where there are sensor units even in the case of tire rotation. In the tire air pressure monitoring system, a trigger signal is transmitted from a transmission coil antenna to only the corresponding sensor unit in a manner such that a magnetic field is used as a medium and, upon receipt of the trigger signal, the sensor unit measures a tire air pressure and others and transmits a transmission signal including the measurement values to a monitoring unit. The monitoring unit makes a decision on the tire position where there is the sensor unit on the basis of the transmission signal from the sensor unit.
Owner:DENSO CORP

Smart mattress

A mattress has a sensor pad affixed on a top surface thereof. The sensor pad has (i) a matrix array of plural pressure sensors, (ii) plural row conductors, and (iii) plural column conductors. Each intersecting row and column conductor provides an electrical signal from a corresponding sensor when pressure is applied thereto. The sensor pad has plural through-holes therein disposed between the plural row conductors the plural column conductors, respectively. Preferably, at least one patient-mounted physiological sensor is configured to provide an output signal corresponding to a patient physiological parameter. An electronic unit is mounted inside the mattress and is configured to receive signals from the sensor pad. The electronic unit has a data storage unit preferably storing (i) patient identification information, (ii) patient physiological information, and (iii) mattress information. A wireless transmitter is coupled to the electronic unit and is configured to wirelessly communicate at least the stored patient physiological information to an off-mattress device.
Owner:EVACUSLED

Wheel identifying apparatus and tire inflation pressure detecting apparatus with function of wheel identification

A wheel identifying apparatus according to the present invention includes a plurality of transceivers, a triggering device, a receiver, and a wheel identifier. Each of the transceivers is located on one of a plurality of wheels of a vehicle and works to receive a trigger signal and transmit a response signal in response to receipt of the trigger signal. The triggering device is located on a body of the vehicle at different distances from the transceivers and works to transmit the trigger signal. The receiver works to receive the response signals transmitted by the transceivers. The wheel identifier is operatively connected to the receiver and works to identify, for each of the response signals received by the receiver, the wheel on which the transceiver having transmitted the response signal is located using the fact that strengths of the trigger signal at the transceivers are different from each other.
Owner:DENSO CORP

Pressure transmitter with diagnostics

In one embodiment, a pressure transmitter is provided which diagnoses the condition of a primary element and / or an impulse line which connects to a pressure sensor. A difference circuit coupled to the pressure sensor has a difference output which represents the sensed pressure minus a moving average. A calculate circuit receives the difference output and calculates a trained output of historical data obtained during an initial training time. The calculate circuit also calculates a monitor output of current data obtained during monitoring or normal operation of the transmitter. A diagnostic circuit receives the trained output and the monitor output and generates a diagnostic output indicating a current condition.
Owner:ROSEMOUNT INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products