Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3148 results about "Pressure monitoring" patented technology

Pressure monitors are used to actively measure actual process pressures or the pressure in a calibration system. Monitors provide flexibility by allowing an operator to use a wide variety of means to generate and control the pressure.

Dynamic annular pressure control apparatus and method

A system and method for controlling formation pressures during drilling of a subterranean formation utilizing a selectively fluid backpressure system in which fluid is pumped down the drilling fluid return system in response to detected borehole pressures. A pressure monitoring system is further provided to monitor detected borehole pressures, model expected borehole pressures for further drilling and control the fluid backpressure system.
Owner:SHELL OIL CO

Method and apparatus to monitor devices of a hydraulic circuit of an electro-mechanical transmission

A method and an apparatus are provided to control operation of an electro-mechanical transmission device selectively operative in one of a plurality of fixed gear modes and two continuously variable modes. The method comprises controlling the flow control devices of the electro-hydraulic control circuit, and monitoring a plurality of pressure monitoring devices in the electro-hydraulic control circuit. A fault is identified in the electro-hydraulic control circuit when a signal output of one of the pressure monitoring devices does not correspond to an expected signal output for the pressure monitoring device after an elapsed time period.
Owner:GM GLOBAL TECH OPERATIONS LLC

Intravascular Optical Coherence Tomography System with Pressure Monitoring Interface and Accessories

An optical coherence tomography system and method with integrated pressure measurement. In one embodiment the system includes an interferometer including: a wavelength swept laser; a source arm in communication with the wavelength swept laser; a reference arm in communication with a reference reflector; a first photodetector having a signal output; a detector arm in communication with the first photodetector, a probe interface; a sample arm in communication with a first optical connector of the probe interface; an acquisition and display system comprising: an A / D converter having a signal input in communication with the first photodetector signal output and a signal output; a processor system in communication with the A / D converter signal output; and a display in communication with the processor system; and a probe comprising a pressure sensor and configured for connection to the first optical connector of the probe interface, wherein the pressure transducer comprises an optical pressure transducer.
Owner:LIGHTLAB IMAGING

Intravascular optical coherence tomography system with pressure monitoring interface and accessories

An optical coherence tomography system and method with integrated pressure measurement. In one embodiment the system includes an interferometer including: a wavelength swept laser; a source arm in communication with the wavelength swept laser; a reference arm in communication with a reference reflector; a first photodetector having a signal output; a detector arm in communication with the first photodetector, a probe interface; a sample arm in communication with a first optical connector of the probe interface; an acquisition and display system comprising: an A / D converter having a signal input in communication with the first photodetector signal output and a signal output; a processor system in communication with the A / D converter signal output; and a display in communication with the processor system; and a probe comprising a pressure sensor and configured for connection to the first optical connector of the probe interface, wherein the pressure transducer comprises an optical pressure transducer.
Owner:LIGHTLAB IMAGING

Implantable microscale pressure sensor system for pressure monitoring and management

A MEMS chip sensor (10, 20, 30, 40, 50, 60, 70) based upon detection of an induced inductance in the sensor is described. The sensor is used in an environment for detection of fluid pressures. The method and system is particularly used in animals, including humans, to sense pressure changes, particularly pressure in the eyeball.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV

External user interface for head worn computing

Aspects of the present invention relate to external user interfaces used in connection with head worn computers (HWC). Embodiments relate to an external user interface that has a physical form intended to be hand held. The hand held user interface may be in the form similar to that of a writing instrument, such as a pen. In embodiments, the hand held user interface includes technologies relating to writing surface tip pressure monitoring, lens configurations setting a predetermined imaging distance, user interface software mode selection, quick software application launching, and other interface technologies.
Owner:OSTERHOUT GROUP INC

External user interface for head worn computing

Aspects of the present disclosure relate to external user interfaces used in connection with head worn computers (HWC). Embodiments relate to an external user interface that has a physical form intended to be hand held. The hand held user interface may be in the form similar to that of a writing instrument, such as a pen. In embodiments, the hand held user interface includes technologies relating to writing surface tip pressure monitoring, lens configurations setting a predetermined imaging distance, user interface software mode selection, quick software application launching, and other interface technologies.
Owner:OSTERHOUT GROUP INC

External user interface for head worn computing

Aspects of the present disclosure relate to external user interfaces used in connection with head worn computers (HWC). Embodiments relate to an external user interface that has a physical form intended to be hand held. The hand held user interface may be in the form similar to that of a writing instrument, such as a pen. In embodiments, the hand held user interface includes technologies relating to writing surface tip pressure monitoring, lens configurations setting a predetermined imaging distance, user interface software mode selection, quick software application launching, and other interface technologies.
Owner:OSTERHOUT GROUP INC

External user interface for head worn computing

Aspects of the present disclosure relate to external user interfaces used in connection with head worn computers (HWC). Embodiments relate to an external user interface that has a physical form intended to be hand held. The hand held user interface may be in a form similar to that of a writing instrument, such as a pen. In embodiments, the hand held user interface includes technologies relating to writing surface tip pressure monitoring, lens configurations setting a predetermined imaging distance, user interface software mode selection, quick software application launching, and other interface technologies.
Owner:OSTERHOUT GROUP INC

External user interface for head worn computing

Aspects of the present disclosure relate to external user interfaces used in connection with head worn computers (HWC). Embodiments relate to an external user interface that has a physical form intended to be hand held. The hand held user interface may be in the form similar to that of a writing instrument, such as a pen. In embodiments, the hand held user interface includes technologies relating to writing surface tip pressure monitoring, lens configurations setting a predetermined imaging distance, user interface software mode selection, quick software application launching, and other interface technologies.
Owner:OSTERHOUT GROUP INC

External user interface for head worn computing

Aspects of the present disclosure relate to external user interfaces used in connection with head worn computers (HWC). Embodiments relate to an external user interface that has a physical form intended to be hand held. The hand held user interface may be in the form similar to that of a writing instrument, such as a pen. In embodiments, the hand held user interface includes technologies relating to writing surface tip pressure monitoring, lens configurations setting a predetermined imaging distance, user interface software mode selection, quick software application launching, and other interface technologies.
Owner:OSTERHOUT GROUP INC

External user interface for head worn computing

Aspects of the present invention relate to external user interfaces used in connection with head worn computers (HWC). Embodiments relate to an external user interface that has a physical form intended to be hand held. The hand held user interface may be in the form similar to that of a writing instrument, such as a pen. In embodiments, the hand held user interface includes technologies relating to writing surface tip pressure monitoring, lens configurations setting a predetermined imaging distance, user interface software mode selection, quick software application launching, and other interface technologies.
Owner:OSTERHOUT GROUP INC

Intraurethral pressure monitoring assembly and method of treating incontinence using same

A method of treating urinary incontinence in a patient by: providing a pressure monitor probe comprising a catheter having a pressure responsive region and a distal portion, the pressure responsive region spaced a predetermined distance from the distal portion; inserting the pressure monitor probe into the patient's urethra such that the distal portion is positioned in the patient's bladder adjacent the UVJ, thereby positioning the pressure responsive region of the catheter within the urethra a predetermined distance from the UVJ; and surgically modifying the pressure applied against the urethra while monitoring the pressure applied against the urethra using the probe. An intraurethral pressure monitor probe and an intraurethral pressure monitoring assembly are also provided.
Owner:DEXTERITY SURGICAL

Tire temperature and pressure monitoring sensors and systems

A tire monitoring system providing tire status and notifying or warning the vehicle operator of early detection of imminent tire failure and performance degradation; thus improving safety by preventing blowouts from occurring, lengthening tire life by encouraging preventive maintenance, and improving fuel mileage by encouraging the operator to fill the tire to its proper pressure or repair it. The system monitors temperature of the rim of the wheel to which the tire is attached, such temperature being transmitted to the vehicle operator or other interested parties via means such as radio frequency.
Owner:TUTTLE JOHN R

Method for processing information in a tire pressure monitoring system

A method of processing information in a tire pressure monitoring system includes the steps of: establishing a reference temperature; determining a pressure warning threshold at the reference temperature; measuring gauge pressure and gauge temperature within a tire cavity; correcting the gauge pressure to a filtered pressure value at the reference temperature using the Ideal Gas Law; and comparing the filtered pressure value against the pressure warning threshold to determine the necessity for a warning signal. In an advanced form of the invention, the method includes determining a pressure leak rate; predicting the time interval that the filtered pressure value will cross the pressure warning threshold at the leak rate and generating progressive warnings to the driver over the time interval. Fuzzy logic is used to quantify the probability of a warning state for each data point, allow for measurement error; and report the state of maximum probability to minimize the occurrence of false warning. A warning utility function is derived based upon a combination of the filtered pressure and leak rate.
Owner:THE GOODYEAR TIRE & RUBBER CO

Arterial blood pressure monitoring devices, systems and methods using cardiogenic impedance signal

Provided herein are implantable systems, and methods for use therewith, for monitoring a patient's arterial blood pressure. Electrode(s) implanting within and / or on the patient's heart are used to obtain a cardiogenic impedance (CI) signal indicative of cardiac contractile activity. Additionally, a signal (e.g., PPG or IPG signal) indicative of changes in arterial blood volume remote from the patient's heart is obtained using a sensor or electrodes that are implanted remote from the patient's heart. One or more metrics indicative of pulse arrival time (PAT) are determined, where each metric can be determined by determining a time from one of the detected features of the CI signal to one of the detected features of the signal indicative of changes in arterial blood volume. Based on at least one of the metric(s) indicative of PAT, arterial blood pressure is estimated, which can include determining values indicative of systolic blood pressure, diastolic blood pressure, pulse pressure and / or mean arterial blood pressure, and / or changes in such values.
Owner:PACESETTER INC

Surgical device with pressure monitoring ability

A device with a functional tip containing at least one active electrode capable of creating a controlled perforation in body tissue through the application of Radio Frequency (RF) energy is described. The position of the tip of the device can be determined in response to pressure sensed at the tip and determined by a monitor. The device is useful to remove or perforate unwanted tissue in a controlled manner in any location in the body, particularly in the atrial septum for controlled transseptal puncture. In this application, the device is introduced into the right atrium, and the functional tip is then positioned against the atrial septum. Energy is applied to create the perforation and pressure is monitored to determine if the perforation was created in a desired location. Other possible applications include the removal of plaque or thrombotic occlusions from diseased vessels.
Owner:BOSTON SCI MEDICAL DEVICE LTD

Lead embedded pressure sensor

A pressure capsule embedded in a pacemaker lead to monitor intracardiac chamber pressure is described. This pressure monitor capsule provides highly accurate pressure readings while insuring a high integrity seal against bodily fluids and tissue growth. The capsule is intended to be embedded into a pacemaker cardiac lead or a catheter with the distal (Tip) isolation diaphragm sensing pressure, coupling the pressure through an air column to a protected sensing MEMS device and providing a secure fluid seal to the lead walls. The proximal (Back) end of the capsule provides the electrical interface through the lead to the pacemaker pulse generator.
Owner:KAVLICO CORP

Pressure monitor and alarm for compression mounting with compressed gas storage tank

A warning device configured for removable mounting in combination with a high pressure gas cylinder and a regulator used to regulate the high pressure gas supplied by the cylinder. The device compression mounts between the regulator and tank outlet on conventional portable oxygen and gas supply systems using a specially configured manifold. The device features one or a combination of alarms, from a group including audio, visual, electronic, and remotely transmitted alarms. These alarms are activated by a pressure switch monitoring the remaining supply in the gas cylinder through a conduit the manifold. The alarm signal from the device alerts the user, or a third party monitoring the user, of current tank pressure or will sound an alarm when remaining high pressure gas inside the gas cylinder drops below a predetermined level.
Owner:INGEN TECH

Endotracheal tube pressure monitoring system and method of controlling same

An endotracheal tube pressure monitoring system for an endotracheal tube having at least pressure sensor in communication with a major lumen of the endotracheal tube, and a pressure monitoring subsystem in operative communication with the pressure sensor. The system may also have at least one fluid pressure line in fluid communication with the major lumen and in operative communication with the pressure monitoring subsystem to monitor the pressure of fluid within each respective fluid pressure line, and a purging subsystem in fluid communication with the fluid pressure line. Each fluid pressure line that is in fluid communication with the purging subsystem being selectively purged by the purging subsystem when pressure monitoring subsystem determines the respective pressure line has become obstructed. Purging the fluid pressure line maintains the patency of the pressure line so that accurate pressure measurements within the endotracheal tube can be obtained for calculation of parameters in lung mechanics. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 C.F.R. ยง1.72(b).
Owner:UNIV OF FLORIDA

Aerating system of anesthesia apparatus and respirator and pressure monitoring method

ActiveCN101337101AAvoid interferenceStable and reliable pressure monitoringRespiratorsFluid pressure controlEmergency medicineFeedback control
The invention discloses a pressure monitoring and controlling method used in an aerating system of a medical device. The pressure monitoring and controlling method comprises monitoring the confining pressure of an expiratory valve on a real-time basis, and regulating and maintaining the pressure and the set confining pressure of the expiratory valve at the same value; and monitoring the pressure of a patient terminal gas channel on a real-time basis, and regulating and maintaining the pressure to reach a set control pressure. The aerating system used in the medical facility comprises a gas path system and a pressure monitoring and controlling device. The pressure monitoring and controlling device comprises a parameter monitoring and controlling unit, a valve control unit and a master controller, wherein the parameter monitoring and controlling unit includes a first pressure detecting device placed in to the patient terminal gas channel in the gas path system, and a second pressure detecting device for monitoring and controlling the confining pressure of the expiratory valve in the gas path system. A breathing machine and an anaesthetic machine using the aerating system in the technical proposal monitor the pressure of a control branch of the expiratory valve therein and employ the pressure as the basis of the feedback control to effectively avoid the external disturbance, thereby realizing stable and reliable pressure control.
Owner:SHENZHEN MINDRAY BIO MEDICAL ELECTRONICS CO LTD

Blood pressure monitoring system

A blood pressure monitoring system includes a blood pressure measurement device for measuring blood pressure using a cuff, a memory for storing an externally inputted pulse wave propagation time fluctuation threshold, a time interval detection reference point detection section for detecting a time interval detection reference point in a pulse wave on the side of aortae of a living organism, a pulse wave detection section for detecting a pulse wave on the side of peripheral blood vessels appearing with a time lag with respect to the pulse wave on the side of aortae, a pulse wave propagation time measurement section for measuring a pulse wave propagation time based on respective detected outputs from the time interval detection reference point detection section and the pulse wave detection section, an operation device for calculating a pulse wave propagation fluctuation from two measured pulse wave propagation times, a judgment device for judging whether or not the calculated pulse wave propagation time fluctuation exceeds the pulse wave propagation time fluctuation threshold read from the memory, and a control device for controlling the blood pressure measurement device based on an output of the judgment device so that the blood pressure of a subject is measured using the cuff.
Owner:NIHON KOHDEN CORP

Pressure Sensing Catheter

InactiveUS20110004198A1Easy to installMinimize catheter insertion-related complicationBatteries circuit arrangementsMulti-lumen catheterProximatePressure sense
A pressure sensing catheter having a proximal end and a distal end. The proximate end includes one or more leur fittings contiguous with one or more lumens disposed within the catheter, a connector coupled to a signal lead which spans the length of the pressure sensing catheter and a pressure transducer coupled at about a distal end of the pressure sensing catheter. One or more apertures are provided at about the distal end of the pressure sensing catheter to allow infusion of fluids and / or withdrawal of fluid samples contemporaneous with pressure monitoring within a blood vessel. Signals sent from the pressure transducer are converted into vascular pressure units by an electronic monitor coupled to the signal lead connector.
Owner:HOCH ROBERT

System and methods for performing neurophysiologic assessments with pressure monitoring

ActiveUS20070021682A1ElectromyographySensorsMedicineNerve pathology
Systems and methods for performing neurophysiologic assessments of neural tissue including nerve pathology monitoring which may or may not be augmented by adding the ability to assess or monitor the pressure being exerted upon a nerve or nerve root before, during and / or after retraction.
Owner:NUVASIVE

Detecting ventilator system anomalies while in a speaking mode

A method of operating a ventilator assembly having inhalation and exhalation passages communicating with one another, and a respiration assembly that can perform repetitive respiratory cycles. The method includes (a) repetitively cycling the respiration assembly so that during the inhalation phase, gas in the inhalation passage flows to the patient, and during the exhalation phase, an exhalation valve is maintained relatively closed and the exhaled gases flow pass the vocal cords and out of the mouth thereby facilitating the patient's ability to speak, (c) monitoring the pressure within at least one of the passages during the exhalation phase, and (d) determining whether a circuit disconnect or an occlusion exists based on the pressure monitoring.
Owner:PHILIPS RS NORTH AMERICA LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products