Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3965 results about "Supercritical carbon dioxide" patented technology

Supercritical carbon dioxide (sCO₂) is a fluid state of carbon dioxide where it is held at or above its critical temperature and critical pressure. Carbon dioxide usually behaves as a gas in air at standard temperature and pressure (STP), or as a solid called dry ice when frozen. If the temperature and pressure are both increased from STP to be at or above the critical point for carbon dioxide, it can adopt properties midway between a gas and a liquid. More specifically, it behaves as a supercritical fluid above its critical temperature (304.25 K, 31.10 °C, 87.98 °F) and critical pressure (72.9 atm, 7.39 MPa, 1,071 psi, 73.9 bar), expanding to fill its container like a gas but with a density like that of a liquid.

Phase change based heating element system and method

A method of and apparatus for regulating carbon dioxide using a pre-injection assembly coupled to a processing chamber operating at a supercritical state is disclosed. The method and apparatus utilize a source for providing supercritical carbon dioxide to the pre-injection assembly and a temperature control element for maintaining the pre-injection region at a supercritical temperature and pressure.
Owner:SUPERCRITICAL SYSEMS

Porous osteoimplant

ActiveUS20080069852A1Accelerate the remodeling processImprove permeabilityBone implantSkeletal disorderBone growthBone defect
The invention is directed toward porous composites for application to a bone defect site to promote new bone growth. The inventive porous composites comprise a biocompatible polymer and a plurality of particles of bone-derived material, inorganic material, bone substitute material or composite material. In certain embodiments, the porous composites are prepared using a method that includes a supercritical fluid (e.g., supercritical carbon dioxide) treatment. The invention also discloses methods of using these composites as bone void fillers.
Owner:WARSAW ORTHOPEDIC INC

Supercritical carbon dioxide drive physical analogue device

InactiveCN101446189AEasy to achieve high temperature and high pressure supercritical stateOther gas emission reduction technologiesFluid removalRock coreDouble tube
The invention relates to a supercritical carbon dioxide drive physical analogue device, which belongs to the technical field of petroleum engineering and technology. The device adopts two paratactic simulation core devices to be connected with an injecting system, and each simulation core device is provided with an outlet measuring system; the injecting system injects formation water, crude oil and supercritical carbon dioxide to the simulation core devices, and a temperature and pressure measuring and controlling system is adopted to control the temperature set value and the pressure value of the whole system, and the outlet measuring system is adopted to measure the volumes of the carbon dioxide, the formation water and the crude oil which pass through the simulation core devices. After the CO2 gas is cooled and liquefied, the CO2 gas is pressurized and heated up to the supercriticality, and the difficulty of the accurate measurement of the injected CO2 flow; by adopting a double-tube model, the fingering and cross flow phenomenon during the driving process of the heterogeneous reservoir CO2 can be simulated; the design pressure of the device is 0 to 40 MPa, the design temperature is 0 to 180 DEG C, and the device is mainly applied to the research on supercritical CO2 miscible drive, non-miscible drive, continues gas drive or water and gas alternate drive.
Owner:DALIAN UNIV OF TECH

Orthogonal Procesing of Organic Materials Used in Electronic and Electrical Devices

An orthogonal process for photolithographic patterning organic structures is disclosed. The disclosed process utilizes fluorinated solvents or supercritical CO2 as the solvent so that the performance of the organic conductors and semiconductors would not be adversely affected by other aggressive solvent. One disclosed method may also utilize a fluorinated photoresist together with the HFE solvent, but other fluorinated solvents can be used. In one embodiment, the fluorinated photoresist is a resorcinarene, but various fluorinated polymer photoresists and fluorinated molecular glass photoresists can be used as well. For example, a copolymer perfluorodecyl methacrylate (FDMA) and 2-nitrobenzyl methacrylate (NBMA) is a suitable orthogonal fluorinated photoresist for use with fluorinated solvents and supercritical carbon dioxide in a photolithography process. The combination of the fluorinated photoresist and the fluorinated solvent provides a robust, orthogonal process that is yet to be achieved by methods or devices known in the art.
Owner:CORNELL UNIVERSITY

Carbon dioxide oil-displacing nmr imaging detection device

A carbon dioxide drive nuclear magnetic resonance imaging detection device belongs to the technical field of petroleum engineering and technology. The detection device comprises: a simulation core device which is arranged in a nuclear magnetic resonance imaging device; an injection system which sequentially injects formation water, crude oil and supercritical carbon oxide into the simulation core device; a measurement and control system which is employed to control pressure and temperature of the whole system; the nuclear magnetic resonance imaging device which is employed to detect and perform quantitative analysis on an image to be tested to obtain voidage and permeability of a porous medium, and saturation seepage parameters of the supercritical carbon oxide, the formation water and the crude oil; and an output measuring system which is employed to measure volumes of the carbon dioxide gas, the formation water and the crude oil. The detection device has a design pressure of 0-40MPa and design temperature of 0-180 DEG C, and can simulate experimental studies of different displacement schemes of the supercritical CO2 under a complex petroleum reservoir condition; the simulation core device is made of a brass material, which produces no magnetism, satisfies requirements for high pressure and strength, has a compact structure, can be recycled, is conveniently operated, simple and applicable in an experimentation.
Owner:DALIAN UNIV OF TECH

Extraction and fractionation of biopolymers and resins from plant materials

A method for the extraction, separation, fractionation and purification of biopolymers from plant materials using supercritical and / or subcritical solvent extractions is disclosed. Specifically, the process can be used for the separation of resins and rubber from guayule shrub (Parthenium argentatum), and other rubber and / or resin containing plant materials, using supercritical solvent extraction, for example supercritical carbon dioxide extraction. Additionally, polar and / or non-polar co-solvents can be used with supercritical carbon dioxide to enhance the selective extraction of resins and rubbers from the shrub.
Owner:YULEX LLC

Formation of insulator oxide films with acid or base catalyzed hydrolysis of alkoxides in supercritical carbon dioxide

Metal and / or silicon oxides are produced by hydrolysis of alkoxide precursors in the presence of either an acid catalyst or a base catalyst in a supercritical fluid solution. The solubility of the acid catalysts in the supercritical fluid can be increased by complexing the catalyst with a Lewis base that is soluble in the supercritical fluid. The solubility of the base catalysts in the supercritical fluid can be increased by complexing the catalyst with a Lewis acid that is soluble in the supercritical fluid. The solubility of water in the solution is increased by the interaction with the acid or base catalyst.
Owner:MICRON TECH INC +1

Process for a high efficiency and low emission operation of power stations as well as for storage and conversion of energy

The invention relates to a process and a device for process realizing to increase the efficiency of power stations by improvement of the efficiency of using the heat potentials for an electric power production by using of supercritical carbon dioxide as a working fluid and heat transfer medium as well as for the improvement of the ecological balance of power stations by minimization of the carbon dioxide emission and the total avoidance of NOx-emissions by using of pure oxygen for the burning process. Additionally the process allows the buffering of electric overcapacity energy producing mass storages for natural gas, pressed air and carbon dioxide and their effective using as well as in the continuous operation and for peak load supply of power stations.
Owner:TECHNIKUM CORP

Coal-based supercritical carbon dioxide Brayton cycle double-split-flow efficient power generation system

The invention discloses a coal-based supercritical carbon dioxide Brayton cycle double-split-flow efficient power generation system which comprises a low-temperature regenerator, a precooler, a main compressor, a re-compressor, a high-temperature regenerator, a boiler, a high-pressure turbine, a low-pressure turbine and an electric generator. The boiler is composed of a combustion channel, a main heat exchange channel and a tail flue in the smoke flowing direction, wherein the combustion channel, the main heat exchange channel and the tail flue are communicated in sequence; a water-cooled wall and a reheating water-cooled wall are sequentially arranged in the combustion channel in the smoke flowing direction; a high-temperature superheater and a high-temperature reheater are sequentially arranged in the main heat exchange channel in the smoke flowing direction; a baffle, a coal economizer and a low-temperature coal economizer are sequentially arranged in the tail flue in the smoke flowing direction, and a low-temperature reheater and a lower-temperature superheater are arranged on the two sides of the baffle. According to the coal-based supercritical carbon dioxide Brayton cycle double-split-flow efficient power generation system, optimal combining of the coal-fired boiler and the supercritical carbon dioxide Brayton cycle can be achieved, and the heat exchange efficiency of the high-temperature regenerator, the thermal efficiency of the boiler and the efficiency of the power generation system are high.
Owner:XIAN THERMAL POWER RES INST CO LTD

3D printing device and 3D printing method by utilizing supercritical carbon dioxide as solvent

The invention discloses a 3D printing device and a 3D printing method by utilizing supercritical carbon dioxide as a solvent. The device mainly comprises a stock unit, an ejection unit, a three-dimensional molding platform unit and a raw material recycling unit, wherein the ejection unit comprises a gas pump, a needle valve, a cooling fan and a resistive heater; the stock unit comprises high polymer material powder, a powder pump, a carbon dioxide gas cylinder, a mixing tank, a liquefied booster pump, a heater, a liquid pump and a gas pump; the three-dimensional molding platform unit comprises an aluminum alloy molding platform and a three-dimensional ball screw sliding table module; and the raw material recycling unit comprises a closed box and a recovered gas pump. According to the method disclosed by the invention, the carbon dioxide gas is turned to be in a supercritical carbon dioxide state, and after the carbon dioxide gas is completely dissolved to produce supercritical carbon dioxide solution containing a high polymer material, the solution is conveyed into the ejection unit by virtue of the liquid pump. The supercritical carbon dioxide serves as a consumable carrier, so that more kinds of high polymer materials are applied to the field of 3D printing, and the overall performances of 3D printing supplies are improved.
Owner:BEIJING UNIV OF CHEM TECH

Method of depositing metal film and metal deposition cluster tool including supercritical drying/cleaning module

A method of depositing a metal film on a substrate includes a supercritical preclean step, a supercritical desorb step, and a metal deposition step. Preferably, the preclean step includes maintaining supercritical carbon dioxide and a chelating agent in contact with the substrate in order to remove an oxide layer from a metal surface of the substrate. More preferably, the preclean step includes maintaining the supercritical carbon dioxide, the chelating agent, and an acid in contact with the substrate. Alternatively, the preclean step includes maintaining the supercritical carbon dioxide and an amine in contact with the oxide layer. The desorb step includes maintaining supercritical carbon dioxide in contact with the substrate in order to remove adsorbed material from the substrate. The metal deposition step then deposits the metal film on the substrate without exposing the substrate to an oxidizing material which oxidizes the metal surface of the precleaned substrate and without exposing the substrate to a nonvolatile adsorbing material which adsorbs to the substrate. An apparatus for depositing the metal film on a substrate includes a transfer module, a supercritical processing module, a vacuum module, and a metal deposition module. The supercritical processing module is coupled to the transfer module. The vacuum module couples the metal deposition module to the transfer module. In operation, the apparatus for depositing the metal film performs the supercritical preclean step, the supercritical desorb step, and the metal deposition step.
Owner:TOKYO ELECTRON LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products