Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1249 results about "Enhanced oil recovery" patented technology

Enhanced oil recovery (abbreviated EOR), also called tertiary recovery, is the extraction of crude oil from an oil field that cannot be extracted otherwise. EOR can extract 30% to 60% or more of a reservoir's oil, compared to 20% to 40% using primary and secondary recovery. According to the US Department of Energy, there are three primary techniques for EOR: thermal, gas injection, and chemical injection. More advanced, speculative EOR techniques are sometimes called quaternary recovery.

Power plant with emissions recovery

A power plant including an air separation unit (ASU) arranged to separate nitrogen, oxygen, carbon dioxide and argon from air and produce a stream of substantially pure liquid oxygen, nitrogen, carbon dioxide and argon; a steam generator, fired or unfired, arranged to combust a fuel, e.g., natural gas, liquefied natural gas, synthesis gas, coal, petroleum coke, biomass, municipal solid waste or any other gaseous, liquid or solid fuel in the presence of air and a quantity of substantially pure oxygen gas to produce an exhaust gas comprising water, carbon dioxide, carbon monoxide, nitrogen oxides, nitrogen, sulfur oxides and other trace gases, and a steam-turbine-generator to produce electricity, a primary gas heat exchanger unit for particulate/acid gas/moisture removal and a secondary heat exchanger arranged to cool the remainder of the exhaust gases from the steam generator. Exhaust gases are liquefied in the ASU thereby recovering carbon dioxide, nitrogen oxides, nitrogen, sulfur oxides, oxygen, and all other trace gases from the steam generator exhaust gas stream. The cooled gases are liquefied in the ASU and separated for sale or re-use in the power plant. Carbon dioxide liquid is transported from the plant for use in enhanced oil recovery or for other commercial use. Carbon dioxide removal is accomplished in the ASU by cryogenic separation of the gases, after directing the stream of liquid nitrogen from the air separation unit to the exhaust gas heat exchanger units to cool all of the exhaust gases including carbon dioxide, carbon monoxide, nitrogen oxides, nitrogen, oxygen, sulfur oxides, and other trace gases.
Owner:TRIENCON SERVICES

Sulfonated internal olefin surfactant for enhanced oil recovery

ActiveUS20100282467A1Increase profitUnique performance advantageFluid removalFlushingHydrogenAlkene
A process for recovering oil from an oil-bearing formation comprises introducing into said formation an aqueous composition comprising at least one sulfonated derivative of one or more internal olefins, said internal olefins being characterized by having low amounts of tri-substitution on the olefin bond, said sulfonated derivative being obtained by sulfonating a composition comprising internal olefins of the formula:R1R2C═CR3R4 wherein R1, R2, R3 and R4 are the same or different and are hydrogen or straight- or branched-chain, saturated hydrocarbyl groups and the total number of carbon atoms of R1, R2, R3 and R4 is 6 to 44 with the proviso that at least about 96 mole percent of R1 and R3 are straight- or branched-chain, saturated hydrocarbyl groups and at least about 96 mole percent of R2 and R4 are hydrogen. Further provided are compositions for use in recovering oil from an oil-bearing formation which comprise the sulfonated derivatives of one or more internal olefins having low amounts of tri-substitution on the olefin bond.
Owner:STEPAN COMPANY

Integrated enhanced oil recovery process

The present invention relates to an enhanced oil recovery process that is integrated with a synthesis gas generation process, such as gasification or reforming, and an air separation process for generating (i) an oxygen stream for use, for example, in the syngas process or a combustion process, and (ii) a nitrogen stream for EOR use.
Owner:SURE CHAMPION INVESTMENT LTD

Profile control oil-displacement agent for core-shell type inorganic/organic polymer composite microballoon

The invention discloses a profile control oil-displacement agent for a core-shell type inorganic/organic polymer composite microballoon. A preparation method of the core-shell type inorganic/organic polymer composite microballoon comprises the following steps of carrying out surface modification of inorganic cores of inorganic nano-particles such as silica particles and magnetic particles, and carrying out graft polymerisation by a dispersion polymerization method or an inverse emulsion polymerization method to form polymer shells (such as polyacrylamide cross-linked copolymers) on the surfaces of the inorganic cores. The inorganic components and the organic components bind by chemical bonds so that the core-shell type inorganic/organic polymer composite microballoon has very stale structure. The core-shell type inorganic/organic polymer composite microballoon retains the advantages of polymer microballoons and inorganic particles, and has strong heat-resistant and mineralization-resistant capabilities, high plugging strength and good dilatancy. The core-shell type inorganic/organic polymer composite microballoon can move in rock pores and can plug the rock pores. When a plugging pressure difference is improved to a certain degree, elastic deformation of the core-shell type inorganic/organic polymer composite microballoon can be produced and the deformed core-shell type inorganic/organic polymer composite microballoon sequentially moves to a deep rock stratum part so that a liquid flow direction is changed gradually and a crude oil yield is improved. The profile control oil-displacement agent provided by the invention has a large potential.
Owner:BEIJING UNIV OF CHEM TECH

Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery

The present invention is an in-situ apparatus for generating carbon dioxide gas at an oil site for use in enhanced oil recovery (EOR). The apparatus includes a steam generator adapted to boil and superheat water to generate a source of superheated steam, as well as a source of essentially pure oxygen. The apparatus also includes a steam reformer adapted to react a carbonaceous material with the superheated steam and the pure oxygen, in an absence of air, to generate a driver gas comprising primarily carbon dioxide gas and hydrogen gas. A separator is adapted to separate at least a portion of the carbon dioxide gas from the rest of the driver gas to generate a carbon dioxide-rich driver gas and a hydrogen-rich fuel gas. A compressor is used for compressing the carbon dioxide-rich driver gas for use in enhanced oil recovery, and the compressed carbon dioxide-rich driver gas, with substantially no oxygen, is injected to a predetermined depth in order to enhance oil recovery at the oil site. Unlike traditional CO2-EOR, which requires large power plants stationed near metropolitan areas and expensive pipeline networks, the in-situ apparatus can be placed or constructed at the site of the oil field, while a portion of the carbonaceous material may be obtained from a site outside the oil field.
Owner:PIONEER ENERGY

Compositions and methods for diverting injected fluids to achieve improved hydrocarbon fluid recovery

ActiveUS20090260819A1Increasing mobilizationImprove recovery rateFluid removalFlushingCross-linkMicroparticle
The present disclosure is directed to compositions and methods that may be used for enhanced oil recovery, for modifying the permeability of subterranean formations and for increasing the mobilization and / or recovery rate of hydrocarbon fluids present in the formations. The compositions may include, for example, expandable cross linked polymeric microparticles having an unexpanded volume average particle size diameter of from about 0.05 to about 5,000 microns and a cross linking agent content of from about 100 to about 200,000 ppm of hydrolytically labile silyl ester or silyl ether crosslinkers and from 0 to about 300 ppm of non-labile crosslinkers.
Owner:CHAMPIONX USA INC +1

High temperature and high pressure visual device for simulating microorganism oil displacement and simulating method thereof

ActiveCN103216222AConvenient and effective temperatureConvenient and effective ring pressure sizeConstructionsFluid removalMicroorganismTemperature control
The invention relates to an experimental method and a device for simulating the process that microcosmic remaining oil is extracted in a microcosmic simulation model under the condition of oil deposit high temperature and high pressure, researching feasibility of microorganism oil displacement technology in improving enhanced oil recovery after water drive, and carrying out visualized microcosmic oil displacement experimental research under the high temperature and high pressure experimental conditions, in particular to a high temperature and high pressure visual device for simulating microorganism oil displacement and a simulating method thereof. The device comprises a model clamp clamping a microcosmic visual model, a displacement system, a back pressure system, an annular pressure system, a pressure monitoring system, a temperature control system and an image collecting system. According to the device, temperature and pressure can be controlled easily, used space is small, safety performance is excellent, operation is simple, action mechanism of microorganism and petroleum hydrocarbon and starting mechanism of the microorganism on the remaining oil can be conveniently observed in a visualized condition, and the device has important significance on wide application and popularization of microcosmic experiments in oil industries.
Owner:UNIV OF SCI & TECH BEIJING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products