Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

65 results about "Endosomal membrane" patented technology

In cell biology, an endosome is a membrane-bound compartment inside eukaryotic cells. It is a compartment of the endocytic membrane transport pathway originating from the trans Golgi membrane.

Enhanced transport using membrane disruptive agents

InactiveUS7737108B1Prevent uptakePrevent clearanceBiocidePeptide/protein ingredientsMetaboliteCell layer
Compositions and methods for transport or release of therapeutic and diagnostic agents or metabolites or other analytes from cells, compartments within cells, or through cell layers or barriers are described. The compositions include a membrane barrier transport enhancing agent and are usually administered in combination with an enhancer and/or exposure to stimuli to effect disruption or altered permeability, transport or release. In a preferred embodiment, the compositions include compounds which disrupt endosomal membranes in response to the low pH in the endosomes but which are relatively inactive toward cell membranes (at physiologic pH, but can become active toward cell membranes if the environment is acidified below ca. pH 6.8), coupled directly or indirectly to a therapeutic or diagnostic agent. Other disruptive agents can also be used, responsive to stimuli and/or enhancers other than pH, such as light, electrical stimuli, electromagnetic stimuli, ultrasound, temperature, or combinations thereof. The compounds can be coupled by ionic, covalent or H bonds to an agent to be delivered or to a ligand which forms a complex with the agent to be delivered. Agents to be delivered can be therapeutic and/or diagnostic agents. Treatments which enhance delivery such as ultrasound, iontopheresis, and/or electrophereis can also be used with the disrupting agents.
Owner:UNIV OF WASHINGTON

pH triggerable polymeric particles

A drug delivery system comprising pH triggerable particles is described. The pH triggerable particles comprise and agent(s) to be delivered, which is encapsulated in a matrix comprising a pH trigger agent and a polymer. Agents including nucleic acids may be delivered intracellularly using the inventive pH triggerable particles. Upon exposure to an acidic environment such as the endosome or phagosome of a cell, the particles dissolve or disrupt due to protonation or an increase in solubility of the pH triggering agent. Pharmaceutical compositions and methods of preparing and administering these particles are also described. These particles may be particularly useful in genetic vaccination.
Owner:MASSACHUSETTS INST OF TECH

Receptor-mediated gene transfer system for targeting tumor gene therapy

The invention relates to a gene transfer system binding to a growth factor receptor, comprising 4-element complex gene transfer system consisting of ligand oligopeptide / polycationic polypeptide / endosome release oligopeptide / exogenous DNA or 3-element complex consisting of ligand oligopeptide / polycationic polypeptide / exogenous DNA. The invention exemplifies E5, GE7, GV1 and GV2 systems and they can be targeted for the introduction of exogenous genes into malignant tumor cells or tumor vascular endotheliocytes. They are also able to highly inhibit the growth of tumor cells in animals while p15, p16 or p21WAF-1 was used as exogenous genes. The system according to the invention is a new introduction system in tumor gene therapy.
Owner:SHANGHAI INST OF ONCOLOGY

Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery and methods of using same

The present invention is directed to protocells for specific targeting of hepatocellular and other cancer cells which comprise a nanoporous silica core with a supported lipid bilayer; at least one agent which facilitates cancer cell death (such as a traditional small molecule, a macromolecular cargo (e.g. siRNA or a protein toxin such as ricin toxin A-chain or diphtheria toxin A-chain) and / or a histone-packaged plasmid DNA disposed within the nanoporous silica core (preferably supercoiled in order to more efficiently package the DNA into protocells) which is optionally modified with a nuclear localization sequence to assist in localizing protocells within the nucleus of the cancer cell and the ability to express peptides involved in therapy (apoptosis / cell death) of the cancer cell or as a reporter, a targeting peptide which targets cancer cells in tissue to be treated such that binding of the protocell to the targeted cells is specific and enhanced and a fusogenic peptide that promotes endosomal escape of protocells and encapsulated DNA. Protocells according to the present invention may be used to treat cancer, especially including hepatocellular (liver) cancer using novel binding peptides (c-MET peptides) which selectively bind to hepatocellular tissue or to function in diagnosis of cancer, including cancer treatment and drug discovery.
Owner:NAT TECH & ENG SOLUTIONS OF SANDIA LLC +1

Tlr agonists

The present invention provides TLR agonist conjugates (compounds) and compositions, as well as methods of using them. The compounds of the invention are broad-spectrum, long-lasting, and non-toxic combination of synthetic immunostimulatory agents, which are useful for activating the immune system of a mammal, preferably a human and can help direct the pharmacophore to the receptor within the endosomes of target cells and enhance the signal transduction induced by the pharmacophore.
Owner:RGT UNIV OF CALIFORNIA

Targeting cell-penetrating peptide vector based on histidine and application

The invention discloses a targeting cell-penetrating peptide vector based on histidine and an application. The amino acid sequence of the targeting cell-penetrating peptide vector based on histidine is REDV-YGRKKRRQRRR-PKKKRKV-Hm, wherein m ranges from 4 to 12. The targeting cell-penetrating peptide vector based on histidine has better biocompatibility, has a cell-penetrating function, a nuclear localization function, an endothelial cell targeting function and a certain pH buffer effect and can more easily escape from an endosome, so that the gene delivery effect is improved, the purposes of promoting cell migration and proliferation and promoting forming of blood vessels are achieved, and the current problems of non-virus vectors are solved.
Owner:TIANJIN UNIV

Wild-Type Receptor Assays

A method for determining ligand activation of receptors using cells expressing genetic constructs of a fusion protein of at least a binding domain of an auxiliary protein and a fragment of β-galactosidase, a fusion protein of an endosome-associated protein and a complementary fragment of β-galactosidase, and a wild-type receptor. The receptors are characterized by binding to the auxiliary protein-binding domain upon activation by an agonist and then endocytosing associated with an endosome to which the endosome-associated protein binds. Cells are incubated with a candidate ligand followed by lysis with a lysing medium comprising a substrate for the β-galactosidase. The enzyme product is then detected as a measure of the activation of the receptor.
Owner:DISCOVERYX CORP

Chimeric pcsk9 proteins, cells comprising same, and assays using same

A chimera protein comprising in the following order: a signal peptide, a proprotein convertase subtilisin / kexin type 9 preproprotein (PCSK9) sequence consisting of amino acid residues at positions 35 to 696 of SEQ ID NO: 38, a transmembrane domain and a cytosolic domain, wherein said cytosolic (CT) domain comprises a sequence able to recycle the protein from the cellular membrane to endosomes.
Owner:ADAERATA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products