Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

33results about How to "Highly achieved" patented technology

Display device, method for driving the same, and electronic device using the display device and the method

An object is to reduce degradation of display quality due to variation in luminance of light-emitting elements, which is caused by variation in voltage because of wiring resistance of current supply lines, and to improve the display quality. In a voltage program period, a terminal serving as a source of a transistor for driving an EL element is electrically connected to a first wiring to which a first potential is supplied. In a light-emitting period, the terminal serving as the source of the driving transistor is electrically connected to a second wiring to which a second potential is supplied. Accordingly, voltage between a gate terminal and the source terminal of the driving transistor can be held without being adversely affected by wiring resistance of the current supply lines.
Owner:SEMICON ENERGY LAB CO LTD

Low energy, high substrate efficiency, anaerobic, deep, bubble column fermentation processes

ActiveUS20130078688A1High conversion of carbon monoxideRisk minimizationBiofuelsChemical recyclingSimple Organic CompoundsHydrogen
Bioconversion processes are disclosed that enable high conversion efficiencies of gas substrate containing both carbon monoxide and hydrogen to oxygenated organic compounds via the carbon monoxide and hydrogen pathways using anaerobic, deep, bubble column fermentation in a cost effective manner. The high conversion efficiency processes of this invention comprise the combination of using at least two deep, bubble column reactors in flow series and using certain feed gas compositions and microbubbles while avoiding carbon monoxide inhibition.
Owner:SYNATA BIO INC

Recovery of benzene and benzene derivatives from gasoline fractions and refinery streams

A process for the separation of the aromatic compounds benzene, toluene and xylene from an aromatics-containing reformate gasoline and pyrolysis gasoline or a coke-oven light oil or an aromatics-containing refinery stream, in which the aromatics are separated by an extractive distillation uses a novel solvent combination made up of the compounds n,n′-diformyl piperazine or 2,2-bis-(cyanoethyl)ether in a combination with n-formyl morpholine as a second solvent for extractive distillation so that the solvent combination obtained shows a higher selectivity with regard to the aromatics to be extracted so that a lower solvent load is required. The aromatics-containing feed mixture is first submitted to a pre-distillation so that the obtained fraction has a narrow boiling point range. This fraction is then submitted to an extractive distillation in a first column, in which an aromatics-lean head product of predominantly paraffinic hydrocarbons is obtained as well as an aromatics-enriched bottom product. The bottom product is passed to a second column in which an aromatics-rich raffinate is obtained by reducing the pressure or increasing the temperature so that the extracting solvent combination obtained as bottom product can be recycled into the process.
Owner:UHDE GMBH

Heteroatom-containing nanocarbon material, preparation method and use thereof, and method for dehydrogenation reaction of hydrocarbons

A heteroatom-containing nano-carbon material, based on the total weight of said heteroatom-containing nano-carbon material and calculated as the elements, has an oxygen content of 1-6 wt %, a nitrogen content of 0-2 wt %, a carbon content of 92-99 wt %. In its XPS, the ratio of the oxygen content as determined with the peak(s) in the range of 531.0-532.5 eV to the oxygen content as determined with the peak(s) in the range of 532.6-533.5 eV is 0.2-0.8; the ratio of the carbon content as determined with the peak(s) in the range of 288.6-288.8 eV to the carbon content as determined with the peak(s) in the range of 286.0-286.2 eV is 0.2-1; the ratio of the nitrogen content as determined with the peak(s) in the range of 398.5-400.1 eV to the total nitrogen content is 0.7-1. The heteroatom-containing nano-carbon material shows a good catalytic capability in dehydrogenation of hydrocarbons.
Owner:CHINA PETROCHEMICAL CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products