Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

31results about How to "High capacitance retention" patented technology

Separator for electric double layer capacitor

Disclosed is a separator for electric double layer capacitors which is composed of a porous sheet containing a fibrillated heat-resistant fiber, a polyester fiber having a fineness of not less than 0.01 dtex and less than 0.10 dtex, and a fibrillated cellulose. The separator for electric double layer capacitors is suitable for an electric double layer capacitor which operates at a high voltage of not less than 3 V.
Owner:MITSUBISHI PAPER MILLS LTD

Lithium-ion secondary battery negative electrode material and preparation method thereof

The invention relates to a lithium ion secondary battery anode material and a preparation method. The lithium ion secondary battery anode material adopts the unburned carbon of fuel fly ash as a carbon material. The invention also provides the preparation method for the lithium ion secondary battery anode material. The preparation method comprises the following steps of: grinding the unburned carbon in a ball mill, and performing heat treatment, wherein a temperature range required by the heat treatment is 2,000 to 3,200 DEG C; and preserving heat for a certain time, cooling the unburned carbon to room temperature, performing acid treatment by adopting acidic aqueous solution, and thus obtaining power which is unburned carbon graphite powder as the lithium ion secondary battery anode material. After kinds of analysis are performed on the unburned carbon graphite powder, the graphitizing grade and crystallinity of the unburned carbon graphite powder are increased, and the unburned carbon graphite powder with such a structure and such components has relatively higher capacity retentions, simultaneously meets the requirements of relatively lower cost and environmental friendliness and is proved to be sufficient to serve as the lithium ion secondary battery anode material.
Owner:上高县荣炭科技有限公司

Agarose/polyaniline compound gel, method for preparing same and application of agarose/polyaniline compound gel

The invention discloses agarose/polyaniline compound gel, a method for preparing the same and application of the agarose/polyaniline compound gel. The agarose/polyaniline compound gel is of a sandwich polyaniline/agarose electrolyte/polyaniline integrated structure. The method includes steps of (1), adding agarose into electrolyte solution with certain concentration, uniformly mixing the agarose and the electrolyte solution with each other and then pouring the agarose and the electrolyte solution into molds to obtain agarose gel; (2), arranging the agarose gel in aniline solution, attaching aniline to the surfaces of the agarose gel and then immersing the agarose gel in oxidizing agent solution to obtain the agarose/polyaniline compound gel by means of oxidative polymerization. Current collectors can be arranged on the surfaces of the agarose/polyaniline compound gel, so that flexible supercapacitors on the basis of the agarose/polyaniline compound gel can be assembled. The agarose/polyaniline compound gel, the method and the application have the advantages that procedures for preparing the agarose/polyaniline compound gel are simple, electrodes and electrolyte layers are integrated on the agarose/polyaniline compound gel, the agarose/polyaniline compound gel is good in mechanical property and flexible bending property, and the supercapacitors made of the agarose/polyaniline compound gel are excellent in flexibility, capacitive character and cycling stability.
Owner:WUHAN INSTITUTE OF TECHNOLOGY

Method for reducing carbon dioxide into porous carbon material, and porous carbon material and application thereof

The invention belongs to the technical fields of metal thermal reduction reactions and graphene materials, and particularly discloses a method for reducing carbon dioxide into a porous carbon material, and the porous carbon material and application thereof. The method comprises the following specific steps: carrying out heat treatment on magnesium-containing metal in a CO2-containing atmosphere; after a reaction is finished, stirring an obtained product in an HCl solution; and purifying the obtained mixture, and carrying out drying overnight at room temperature to obtain the porous carbon material. The specific surface area of the porous carbon material prepared from the magnesium-zinc mixture can reach 1800-2000 m<2>/g; the conductivity of the material is as high as 1000 to 1100 S/m; thecapacitance retention rate is high; the tap density of the material is almost the same as the tap density of activated carbon and is 0.60-0.65 g/cm<3>; so the porous carbon material is an ideal material for preparing a high-power electrochemical capacitor electrode. The porous carbon material prepared from the magnesium-copper mixture has the advantages of favorable specific surface area and goodcrystallinity, and is an ideal material for preparing electrodes of microbial fuel cells.
Owner:SOUTH CHINA NORMAL UNIVERSITY

Method for preparing nanometer porous carbon with xanthoceras sorbifolia bunge seed coats and nanometer porous carbon

The invention relates to a method for preparing nanometer porous carbon with xanthoceras sorbifolia bunge seed coats, nanometer porous carbon, a super-capacitor electrode slice and a preparation method of the super-capacitor electrode slice. Through regulation and control of the activation temperature and the dosage of an activator; for xanthoceras sorbifolia bunge seed coat porous carbon, the specific surface area is 2148m2/g, a porous structure is formed by a great amount of micropores which are regularly and closely arranged, and the pore diameter distribution is 2nm or below. For an electrode prepared with the porous carbon, the specific capacitance at the current density of 0.5A/g reaches up to 429F/g, the electrode still has very good specific capacitance (128F/g) when the current density rises to 20A/g, and the capacitance retention still reaches up to 98.7 percent after the electrode is charged or discharged for 1000 times under the condition with the current density being 10A/g. The porous carbon prepared with the xanthoceras sorbifolia bunge seed coats as a raw material has good electrochemical performance, can be used as an electrode material for a super-capacitor and provides a new thought and way of comprehensive development and utilization of xanthoceras sorbifolia bunge resources.
Owner:SHAANXI UNIV OF CHINESE MEDICINE

Group matching method for recycling of recovered power batteries

The invention discloses a group matching method for recycling of recovered power batteries. The method comprises the steps of establishing a database, measuring the voltage and the internal resistance of the recovered power batteries, selecting the recovered power batteries with the voltage and the internal resistance within preset ranges, performing charging and discharging detection on the selected recovered power batteries to acquire the capacity of the recovered power batteries and corresponding relations between charging states and the voltage during charging, selecting the recovered power batteries with the capacity within preset ranges, matching the corresponding relations between the charging states and the voltage during the charging of the selected recovered power batteries with corresponding relations between charging states and the voltage during the charging of the power batteries in the database at different cycle periods, and performing group matching on the recovered batteries with the corresponding relations between the charging states and the voltage during the charging within preset ranges. The group matching method for the recycling of the recovered power batteries can perform group matching according to the attenuation degree of the recovered power batteries, thereby improving the accuracy and the reliability of the group matching.
Owner:深圳市瑞恩维思新能源科技有限公司

Biomass activated carbon, preparation method and application thereof, and electrode

The invention discloses biomass activated carbon, a preparation method and application thereof, and an electrode. The preparation method of the biomass activated carbon comprises the following steps:(1) carrying out primary activation on a mixture of biochar and an alkali at 500-900 DEG C to obtain a precursor A; (2) carrying out secondary activation on the precursor A in an oxidizing gas atmosphere at 500-900 DEG C to obtain a precursor B; (3) washing the precursor B to be neutral, and then drying to obtain a precursor C; and (4) carbonizing the precursor C to obtain the biomass activated carbon. According to the invention, the biomass activated carbon prepared by the preparation method has high specific surface area and high mesopore ratio at the same time; and when an electrode prepared from the biomass activated carbon is used for a supercapacitor, the specific volume is large, and the capacitance retention rate is high.
Owner:NINGBO SHANSHAN NEW MATERIAL TECH

Electric-conduction composite material, negative electrode material prepared from electric-conduction composite material, and secondary battery

The invention discloses an electric-conduction composite material, a negative electrode material prepared from the electric-conduction composite material, and a secondary battery. The electric-conduction composite material comprises: a core part, wherein the core part comprises a first material selected from a group comprising a fourth main group element (IVA), a metal, a metal compound or an alloy; an inner coating layer, wherein the surface of the core part is coated with the inner coating layer, and the inner coating layer is prepared from a group comprising the oxides, the nitrides or thecarbides of the first material; and an outer coating layer, wherein the surface of the inner coating layer is coated with the outer coating layer, and the outer coating layer is prepared from a carbonmaterial and at least a second material (doping material) containing a halogen or a fifth main group element (VA).
Owner:硅力能股份有限公司

Preparation method of high-performance supercapacitor electrode

ActiveCN107742588AExcellent specific capacitance performanceHigh yieldMaterial nanotechnologyHybrid capacitor electrodesCapacitanceMaterials science
The invention discloses a preparation method of a high-performance supercapacitor electrode. The method is characterized by comprising the steps of firstly, preparing an h-MoO3 nanometer material by means of a hydrothermal method; secondly, conducting annealing treatment on the h-MoO3 nanometer material, and obtaining an alpha-MoO3 nanometer laminated material; mixing the alpha-MoO3 nanometer laminated material as an active substance with a conductive substance and a binder to prepare the supercapacitor electrode. When the current density is 2Ag-1, the specific capacitance performance of the MoO3 electrode prepared by means of the method is excellent and can reach 1417Fg-1 which is the highest value publicly reported under the same test condition on the basis of the material at present; after the MoO3 electrode prepared by means of the method is charged and dischargd 2,000 times under the condition that the current density is 10Ag-1, and the capacitance retention rate is high and can reach 60%.
Owner:ANHUI UNIVERSITY

Carbon hollow sphere coated metal selenide composite material as well as preparation method and application thereof

The invention discloses a carbon hollow sphere coated metal selenide composite material as well as a preparation method and application thereof, and relates to the technical field of green energy materials. The composite material is of a double-layer structure, the inner layer of the composite material is NiSex nanoparticles, the outer layer of the composite material is carbon hollow spheres, and the NiSex nanoparticles of the inner layer of the composite material are uniformly dispersed in the carbon hollow spheres. The invention further discloses a preparation method and application of the NiSex-coated CBs composite material. According to the invention, Ni-soc-MOF is taken as a template, an in-situ selenylation method is adopted to successfully prepare a composite material in which a nickel-selenium compound is embedded into a carbon hollow sphere, the specific capacitance of NiSe (at) CBs reaches up to 1720F g <-1 > when the current density is 1A g <-1 >, and the NiSe (at) CBs//AC asymmetric supercapacitor has high energy density of 45.2 W h kg <-1 > under the power density of 800kW kg <-1 >, shows excellent energy storage performance, and can be applied to the field of supercapacitor devices. The capacitance retention rate of the NiSexCBs//AC asymmetric supercapacitor after 5000 cycles still reaches up to 89%, and the NiSexCBs//AC asymmetric supercapacitor shows high cycle stability.
Owner:ANYANG INST OF TECH

Lithium ion secondary battery anode material and preparation method

The invention relates to a lithium ion secondary battery anode material and a preparation method. The lithium ion secondary battery anode material adopts the unburned carbon of fuel fly ash as a carbon material. The invention also provides the preparation method for the lithium ion secondary battery anode material. The preparation method comprises the following steps of: grinding the unburned carbon in a ball mill, and performing heat treatment, wherein a temperature range required by the heat treatment is 2,000 to 3,200 DEG C; and preserving heat for a certain time, cooling the unburned carbon to room temperature, performing acid treatment by adopting acidic aqueous solution, and thus obtaining power which is unburned carbon graphite powder as the lithium ion secondary battery anode material. After kinds of analysis are performed on the unburned carbon graphite powder, the graphitizing grade and crystallinity of the unburned carbon graphite powder are increased, and the unburned carbon graphite powder with such a structure and such components has relatively higher capacity retentions, simultaneously meets the requirements of relatively lower cost and environmental friendliness and is proved to be sufficient to serve as the lithium ion secondary battery anode material.
Owner:上高县荣炭科技有限公司

Sulfide solid electrolyte

A purpose of the present invention is to provide a sulfide solid electrolyte with which it is possible to obtain a lithium-ion cell having a high capacity retention rate. The present invention pertains to a sulfide solid electrolyte containing lithium, phosphorus, and sulfur. The sulfide solid electrolyte has, in powder X-ray diffraction in which CuK alpha radiation is used, a diffraction peak A at 2 theta = 25.2 + / - 0.5 deg and a diffraction peak B at 29.7 + / - 0.5 deg. The area ratio, in relation to the total area of a glass-derived peak observed by solid 31P-NMR measurement, of a PS4 3-glass-derived peak is 90-100%, and the area ratio of the glass-derived peak in relation to the total area of all peaks in 60-120 ppm observed by solid 31P-NMR measurement is 1-45%.
Owner:IDEMITSU KOSAN CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products