Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

492results about How to "Blocking may occur" patented technology

Method, base station and mobile station for timeslot selection and timeslot assignment

A timeslot selection method is provided. The timeslot selection method includes the steps of: obtaining a propagation loss; receiving an occupation state and an interference amount of an uplink timeslot; obtaining a desired wave power from the propagation loss; obtaining a ratio between the desired wave power and the propagation loss for the uplink timeslot in which the occupation state is idle; and selecting the transmitting timeslot by using the ratio. In addition, a timeslot assignment method in which there are a plurality of TDD boundaries each of which is a boundary between at least an uplink timeslot and at least a downlink timeslot in a frame is provided. Furthermore, a timeslot assignment method is provided, in which assignment is carried out according to a service class included in a QoS request.
Owner:NTT DOCOMO INC

Battery module, battery system and electric vehicle

A long-sized FPC board extending in an X-direction is connected in common to a plurality of bus bars on the side of one ends of a plurality of battery cells. Similarly, a long-sized FPC board extending in the X-direction is connected in common to a plurality of bus bars on the side of the other ends in a Y-direction of the plurality of battery cells. Each FPC board has a configuration in which a plurality of conductor lines are formed on an insulating layer, and has bending characteristics and flexibility. Each FPC board is arranged on the plurality of battery cells while being bent double.
Owner:SANYO ELECTRIC CO LTD

Endoscope apparatus with an omnidirectional view field and a translatable illuminator

An omnidirectional endoscope device 1 is provided at a distal end part of an insertion section 12 of an endoscope 10 with an omnidirectional light receiving unit 20 for receiving an incident light from all around the periphery in the peripheral direction and reflecting the light toward a relay lens optical system 13. The insertion section 12 slidably pierces through a retaining cylinder 33. A light guide 35 (illumination light transmitting means) is embedded in the retaining cylinder 33, and an outgoing surface at the distal end of this light guide 35 is faced with a distal end face of the retaining cylinder 33. The retaining cylinder 33 can be operated in a sliding manner by a grip 31 disposed at the basal end. By this, the illumination light can strike upon the view field of the omnidirectional light receiving mechanism regardless whether the inside space of an image to be observed is large or small.
Owner:MACHIDA ENDOSCOPE

Process for Producing SOI Substrate and Process for Regeneration of Layer Transferred Wafer in the Production

InactiveUS20060228846A1Increase in numberDecreased unit pricePolycrystalline material growthAfter-treatment detailsOxideThin film soi
A process for producing an SOI substrate includes the steps of forming an oxide film on at least the front surface of a first silicon substrate, implanting hydrogen ion from the surface of the first silicon substrate and thereby forming an ion implantation area in the inside of the first silicon substrate, laminating a second silicon substrate onto the first silicon substrate via the oxide film and thereby forming a laminated body of the first silicon substrate and the second silicon substrate bonded with each other, and heating the laminated body at a predetermined temperature and thereby separating the first silicon substrate at the ion implantation area and thereby obtaining an SOI substrate wherein a thin film SOI layer is formed on the second silicon substrate via the oxide film. The first silicon substrate is formed by slicing an ingot free of an agglomerate of vacancy type point defects and an agglomerate of interstitial silicon type point defects grown by a CZ method in an inorganic atmosphere including hydrogen. The layer transferred wafer separated from the SOI layer is used again as the first silicon substrate.
Owner:SUMCO CORP

Laminate type electronic component

A laminate type electronic component 1 comprises, at least, a dielectric part 2 containing a dielectric as a constituent material, and a pair of a first external electrode 31 and a second external electrode 32, each disposed in close contact with the dielectric part 2, opposing each other by way of the dielectric part 2. The dielectric part 2 comprises laminated dielectric layers 21a to 21f; and at least two internal electrodes 23a to 23e disposed one by one between layers adjacent each other in the dielectric layers 21a to 21f, while each being electrically connected to one of the first external electrode 31 and second external electrode 32. At least one of the internal electrodes 23a to 23e is electrically connected to the first external electrode 31, and at least one of the internal electrodes 23a to 23e is electrically connected to the second external electrode 32. The first external electrode 31 and second external electrode 32 comprise resin electrode layers 31a and 32a, each made of a conductive resin mainly composed of a thermosetting resin and a conductive particle; a metal electrode layer 31b disposed between the resin electrode layer 31a and the dielectric part 2; and a metal electrode layer 32b disposed between the resin electrode layer 32a and the dielectric part 2. The conductive particle content in the conductive resin is 70 to 75 mass %, whereas the conductive particle contains, as a main ingredient, acicular particles 71 having an average longitudinal length of 30 to 70 μm and an aspect ratio of 1.5 to 3.3.
Owner:TDK CORPARATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products