Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

8314 results about "Statistical physics" patented technology

Statistical physics is a branch of physics that uses methods of probability theory and statistics, and particularly the mathematical tools for dealing with large populations and approximations, in solving physical problems. It can describe a wide variety of fields with an inherently stochastic nature. Its applications include many problems in the fields of physics, biology, chemistry, neuroscience, and even some social sciences, such as sociology and linguistics. Its main purpose is to clarify the properties of matter in aggregate, in terms of physical laws governing atomic motion.

A System and Method for Modelling System Behaviour

A method of modelling system behaviour of a physical system, the method including, in one or more electronic processing devices obtaining quantified system data measured for the physical system, the quantified system data being at least partially indicative of the system behaviour for at least a time period, forming at least one population of model units, each model unit including model parameters and at least part of a model, the model parameters being at least partially based on the quantified system data, each model including one or more mathematical equations for modelling system behaviour, for each model unit calculating at least one solution trajectory for at least part of the at least one time period; determining a fitness value based at least in part on the at least one solution trajectory; and, selecting a combination of model units using the fitness values of each model unit, the combination of model units representing a collective model that models the system behaviour.
Owner:EVOLVING MACHINE INTELLIGENCE

Method to determine optical proximity correction and assist feature rules which account for variations in mask dimensions

Optical proximity correction (OPC) and assist feature rules are generated using a process window (PW) analysis. A reference pitch is chosen and the mask bias is found that optimizes the process window. This can be done using standard process window analysis or through a weighted process window (WPW) analysis which accounts for focus and dose distributions that are expected in a real process. The WPW analysis gives not only the optimum mask bias, but also the center focus and dose conditions for the optimum process centering. A series of other pitches and mask biases are then analyzed by finding the common process window with the reference pitch. For the standard PW analysis, a common process window is found. For the WPW analysis, the WPW is computed at the center focus and dose conditions found for the reference pitch. If mask or lens errors are to be accounted for, then multiple structures can be included in the analysis. Once the common process windows for the mask features of interest have been computed, functional fits to the data can be found. Once the functional forms have been found for each of the OPC parameters, the rules table can be determined by solving for the spacings of interest in the design.
Owner:GLOBALFOUNDRIES U S INC

Filter design algorithm for multi-variate optical computing

Within a method of making an optical interference filter, sample spectra and measurements of a predetermined characteristic associated with respective spectra are provided. Upon selection of an initial number of filter layers and a thickness for each layer, a transmission spectrum is determined. Each sample spectrum is applied to a regression formula that relates interaction of light with the transmission spectrum to a regression value. A comparison relationship between the calculated regression values and the sample measurements is defined and optimized, wherein thickness of each layer is an optimization variable.
Owner:HALLIBURTON ENERGY SERVICES INC

Method and system for gas turbine engine simulation using adaptive Kalman filter

A method for simulating a gas turbine including the steps of: sensing values of a plurality of first operating parameters of an actual gas turbine; applying the sensed values of the first operating parameters to a model of the gas turbine, wherein the model generates a plurality of predicted second operating parameters; determining difference values between the predicted second operating parameters and corresponding sensed second operating parameters of the actual gas turbine; modifying the difference values based on tuning factors generated by a Kalman filter gain matrix during operation of the gas turbine, and using the adjusted difference values to adjust the model of the gas turbine. The method may further comprise generating the tuning factors by applying to the model the sensed values of the plurality of first operating parameters and pertubated values of the adjusted different values to determine optimal tuning factors.
Owner:GENERAL ELECTRIC CO

Selecting a profile model for use in optical metrology using a machine learining system

A profile model can be selected for use in examining a structure formed on a semiconductor wafer using optical metrology by obtaining an initial profile model having a set of profile parameters. A machine learning system is trained using the initial profile model. A simulated diffraction signal is generated for an optimized profile model using the trained machine learning system, where the optimized profile model has a set of profile parameters with the same or fewer profile parameters than the initial profile model. A determination is made as to whether the one or more termination criteria are met. If the one or more termination criteria are met, the optimized profile model is modified and another simulated diffraction signal is generated using the same trained machine learning system.
Owner:TOKYO ELECTRON LTD

Parametric profiling using optical spectroscopic systems

A gallery of seed profiles is constructed and the initial parameter values associated with the profiles are selected using manufacturing process knowledge of semiconductor devices. Manufacturing process knowledge may also be used to select the best seed profile and the best set of initial parameter values as the starting point of an optimization process whereby data associated with parameter values of the profile predicted by a model is compared to measured data in order to arrive at values of the parameters. Film layers over or under the periodic structure may also be taken into account. Different radiation parameters such as the reflectivities RS, RP and ellipsometric parameters may be used in measuring the diffracting structures and the associated films. Some of the radiation parameters may be more sensitive to a change in the parameter value of the profile or of the films then other radiation parameters. One or more radiation parameters that are more sensitive to such changes may be selected in the above-described optimization process to arrive at a more accurate measurement. The above-described techniques may be supplied to a track / stepper and etcher to control the lithographic and etching processes in order to compensate for any errors in the profile parameters.
Owner:KLA TENCOR CORP

Method and system for creating irregular three-dimensional polygonal volume models in a three-dimensional geographic information system

A method to construct a solid three-dimensional polygonal model of a three-dimensional irregular volume within a GIS platform comprising of: (1) introducing desired data including control points and attributes relating to the three-dimensional irregular volume into the GIS platform; (2) estimating at least one two-dimensional polygon representing a lateral boundary of the three-dimensional irregular volume based upon values of variable of interest at the control points; (3) estimating irregular surfaces representing top and bottom of the three-dimensional irregular volume by interpolating grids of depth values from the control points for the top and bottom surfaces of the three-dimensional irregular volume; (4) clipping the estimated irregular surfaces with the estimated at least one two-dimensional boundary polygon; (5) constructing multipatches of a network of triangular panels representing top surface, bottom surface, and sides of the three-dimensional irregular volume to produce a solid three-dimensional irregular volume model within the GIS platform; and (6) joining the attributes to the solid three-dimensional irregular volume model within the GIS platform. A method to construct a wire-frame three-dimensional polygonal model of a three-dimensional irregular volume within a GIS platform comprising of the same steps 1-4 and 6 as described above and the step of constructing a grid of regularly spaced polylineZs representing top surface, bottom surface, and sides of the three-dimensional irregular volume to produce the wire frame three-dimensional irregular volume model within the GIS platform. A system comprising of a computer system and processing software using the method of the present invention to construct a three-dimensional polygonal model of a three-dimensional irregular volume within a GIS platform.
Owner:EARTH SCI ASSOCS

System and method for 3D frequency domain waveform inversion based on 3D time-domain forward modeling

According to a first preferred aspect of the instant invention, there is provided an efficient method of computing a 3D frequency domain waveform inversion based on 3D time domain modeling. In the preferred arrangement, 3D frequency domain wavefields are computed using 3D time-domain modeling and a discrete Fourier transformation that is preferably computed “on the fly” instead of solving the large systems of linear equations that have traditionally been required by direct frequency domain modeling. The instant invention makes use of the theory of gradient-based waveform inversion that estimates model parameters (for example velocities) by matching modeled data to field data sets. Preferably the modeled data are calculated using a forward modeling algorithm.
Owner:BP CORP NORTH AMERICA INC

Method for creating single 3D surface model from a point cloud

A single surface representation is created from a cloud of points. Each point in the cloud of points is assigned three-dimensional spatial coordinates. The cloud of points is stored in a memory of a computer. Machine-executable instructions are provided for the computer that operate on the cloud of points. The instructions construct an initial triangle from the cloud of points. The instructions construct a multitude of adjacent triangles forming a single continuous surface representing the object. The triangles comprise planar surfaces having three vertices. The vertices of the adjacent triangles comprise the three points forming the initial triangle and a multitude of other points. Except for the initial two points, the points forming the triangles are each computed as a weighted average of a set of nearby points in the cloud of points that satisfy selection criteria. The resulting vertex also has to satisfy one or more selection criteria. The final weighted average surface representation requires much less data to represent the object surface than the initial point cloud.
Owner:ORAMETRIX

Printability verification by progressive modeling accuracy

A fast method of verifying a lithographic mask design is provided wherein catastrophic errors are identified by iteratively simulating and verifying images for the mask layout using progressively more accurate image models, including optical and resist models. Progressively accurate optical models include SOCS kernels that provide successively less influence. Corresponding resist models are constructed that may include only SOCS kernel terms corresponding to the optical model, or may include image trait terms of varying influence ranges. Errors associated with excessive light, such as bridging, side-lobe or SRAF printing errors, are preferably identified with bright field simulations, while errors associated with insufficient light, such as necking or line-end shortening overlay errors, are preferably identified with dark field simulations.
Owner:GLOBALFOUNDRIES INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products