Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

398 results about "Analogue filter" patented technology

Analogue filters are a basic building block of signal processing much used in electronics. Amongst their many applications are the separation of an audio signal before application to bass, mid-range, and tweeter loudspeakers; the combining and later separation of multiple telephone conversations onto a single channel; the selection of a chosen radio station in a radio receiver and rejection of others.

Waveform adaptive ultra-wideband transmitter

A waveform adaptive transmitter that conditions and/or modulates the phase, frequency, bandwidth, amplitude and/or attenuation of ultra-wideband (UWB) pulses. The transmitter confines or band-limits UWB signals within spectral limits for use in communication, positioning, and/or radar applications. One embodiment comprises a low-level UWB source (e.g., an impulse generator or time-gated oscillator (fixed or voltage-controlled)), a waveform adapter (e.g., digital or analog filter, pulse shaper, and/or voltage variable attenuator), a power amplifier, and an antenna to radiate a band-limited and/or modulated UWB or wideband signals. In a special case where the oscillator has zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter. In another embodiment, a low-level impulse signal is approximated by a time-gated continuous-wave oscillator to produce an extremely wide bandwidth pulse with deterministic center frequency and bandwidth characteristics. The UWB signal may be modulated to carry multi-megabit per second digital data, or may be used in object detection or for ranging applications. Activation of the power amplifier may be time-gated in cadence with the UWB source thereby to reduce inter-pulse power consumption. The UWB transmitter is capable of extremely high pulse repetition frequencies (PRFs) and data rates in the hundreds of megabits per second or more, frequency agility on a pulse-to-pulse basis allowing frequency hopping if desired, and extensibility from below HF to millimeter wave frequencies.
Owner:ZEBRA TECH CORP

Ultra wideband data transmission system and method

A data-modulated ultra wideband transmitter that modulates the phase, frequency, bandwidth, amplitude and / or attenuation of ultra-wideband (UWB) pulses. The transmitter confines or band-limits UWB signals within spectral limits for use in communication, positioning, and / or radar applications. One embodiment comprises a low-level UWB source (e.g., an impulse generator or time-gated oscillator (fixed or voltage-controlled)), a waveform adapter (e.g., digital or analog filter, pulse shaper, and / or voltage variable attenuator), a power amplifier, and an antenna to radiate a band-limited and / or modulated UWB or wideband signals. In a special case where the oscillator has zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter. In another embodiment, a low-level impulse signal is approximated by a time-gated continuous-wave oscillator to produce an extremely wide bandwidth pulse with deterministic center frequency and bandwidth characteristics. The UWB signal may be modulated to carry multi-megabit per second digital data, or may be used in object detection or for ranging applications. Activation of the power amplifier may be time-gated in cadence with the UWB source thereby to reduce inter-pulse power consumption. The UWB transmitter is capable of extremely high pulse repetition frequencies (PRFs) and data rates in the hundreds of megabits per second or more, frequency agility on a pulse-to-pulse basis allowing frequency hopping if desired, and extensibility from below HF to millimeter wave frequencies.
Owner:ZEBRA TECH CORP

Digital to analog converter

A digital to analog converter includes a digital processor having an input port adapted to receive an input signal and an output port coupled to an input port of an analog filter wherein the digital processor includes a digital feedback loop which compares a reference digital voltage with a digital voltage provided by a digital model of the analog filter. Using a completely digital feedback loop which compares an input digital voltage with the digital voltage from the digital model of the analog filter results in a single bit digital to analog converter having improved accuracy for a given clock rate and filter. The next digital state of the converter (i.e. ‘0’ or ‘1’) is selected based upon a comparison of the input (or reference) voltage with the digital voltage provided by the digital feedback loop. The digital converter output is then fed to the analog filter. If the analog filter matches the digital model, then the analog voltage will match the digital voltage, and therefore the reference voltage.
Owner:VALEO RADAR SYST

Method and apparatus to prevent signal pile-up

InactiveUS6936822B2Increase count-rate capabilityIncrease dose efficiencyMaterial analysis by optical meansTomographyFree energiesData treatment
Methods and apparatuses for obtaining position and energy information without pileup. Signal integration, which is triggered by a present event, stops when a subsequent event is detected. A weighted value for estimating the total energy in a scintillation is calculated, which includes the energy of the current event and a residual energy from previous events. Remnant correction is used to calculate a pile-up free energy from two consecutive weighted values. An analog filter may be applied to reduce noise. Dynamic digital weighting of integrated values, and / or digital integration may be used during data processing. Pileup can be avoided in conjunction with several types of applications, including multi-zone detector applications and coincidence detection applications. High-resolution timing techniques are also disclosed that facilitate one's ability to avoid pileup.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

Pll circuit

InactiveUS20100097150A1Suppressing quantization noiseReduce areaPulse automatic controlLoop filterDigital analog converter
A technique for suppressing quantization noise generated due to digitizing an analog circuit in a PLL circuit is provided. The PLL circuit comprises: a digital phase frequency detector which detects (compares) phases and frequencies of a reference signal and a frequency-divided signal and converts the same to a digital value; a digital loop filter which eliminates high-frequency noise components from an output of the digital phase frequency comparator; a digital-analog converter which converts a digital value of an output of the digital loop filter to an analog value; an analog filter which eliminates a high-frequency noise component from an output of the digital-analog converter; a voltage controlled oscillator whose frequency is controlled based on an output of the analog filter; and a frequency divider which divides the frequency of the voltage controlled oscillator and outputs the frequency-divided signal.
Owner:RENESAS TECH CORP +1

Filter trimming

The invention relates to trimming of analogue filters (201) in integrated circuits by means of an automatic adjusting circuit. A local oscillator (202) in the automatic adjusting circuit provides a periodic reference signal (R) to an adjustable phase shifter (203), which on basis thereof, produces a periodic phase shifted signal (R*). A phase detector (204) receives both the periodic reference signal (R) and the phase shifted period signal (R*) and produces a test signal (T) in response to a phase difference between the periodic reference signal (R) and the periodic phase shifted signal (R8). A lowpass filter (205) receives the test signal (T) and generates a level signal (TDC) relative a reference level, e.g. representing a zero voltage. A digital signal processor (207) produces a primary control signal (CS), having a serial format, on basis of the observation signal (M). A serial-to-parallel converter (208) converts the primary control signal (CS) into a control signal (CP) having a parallel signal format. The control signal (CP) influences a magnitude of at least one component value in the adjustable phase shift between the periodic reference signal (R) and the periodic phase shifted signal (R*) attains a calibrated value being as close as possible to a desired value. A latch (210) forwards at least one signal element of the control signal (CP) for setting of at least one component value in the analogue filter (201) in accordance with a setting of at least one component value in the adjustable phase shifter (203) which produces the calibrated value.
Owner:NAT SEMICON CORP

Lithology while drilling and reservoir characteristics recognizing method

A lithology while drilling and reservoir characteristics recognizing method comprises the following steps: (1), establishing data analysis software and hardware equipment; (2), mounting vibration signal measuring equipment; (3), transmitting vibration acoustic wave signals by a vibration transducer to an analog filter; (4), filtering useless frequency bands in the signals and transmitting useful frequency bands to a high fidelity amplifier by the analog filter; (5), amplifying, strengthening, and transmitting the signals to a digital filter by the high fidelity amplifier; (6), transmitting power spectral density of the signals to a wavelet transformation unit by a power spectrum analysis unit, (7), performing wavelet decomposition, reconstruction and noise elimination on the signals by the wavelet transformation unit; and (8), unfolding restored true signals in spectrographs and energy spectrum charts by a Fourier transformation unit, and determining multiple kinds of lithology and reservoir fluid characteristics by recognizing each group of spectrum lines. The method detects and filters the vibration acoustic wave signals, extracts stratum information, and obtains the lithology and the reservoir fluid characteristics through noise elimination and spectral analysis.
Owner:ZHIXIN COMM SCI & TECH SHANGHAI

System and method using dither to tune a filter

A system and method is used to tune filters, for example, analog filters in a sigma-delta modulator ADC. A known dither signal is used, for example a digital dither signal. Through adding of the dither to the modulator loop, the digital output of the sigma delta modulator ADC contains a filtered version of the digital dither. This signal can be used to reveal characteristics of the modulator-loop, including characteristics of a continuous-time filter in the modulator. Therefore, using the known digital dither signal and the output signal of the modulator, the continuous-time loop filter can be tuned. The tuning can be done in multiple ways, for example, by using standard LMS adaptive filter techniques to estimate the actual response of the continuous-time loopfilter and adjust the continuous-time loopfilter to the desired response.
Owner:AVAGO TECH INT SALES PTE LTD

Controlling the bandwidth of an analog filter

A digital tuning system (250) for changing a cutoff frequency of an analog filter (132) includes digital synthesizers (292 and 294) for producing a two-tone calibration signal (196) applied to an input of the filter after a quality factor of the filter is increased. The filter includes at least one R / C circuit with two resistors (304 and 306) for changing the quality factor and arrays (308 and 310) of capacitors for changing the cutoff frequency. The amplitude of the magnitude responses (409 and 411) of the filter to each tone (405 and 407) is measured by a two discrete Fourier transform single-frequency bin power detection circuits (253 and 254) while the filter is sequenced through a plurality of capacitance settings. An optimal capacitance for the R / C circuit is selected by comparing, to a pre-selected value, a difference between the responses of the filter to each tone, for each capacitance setting.
Owner:APPLE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products