A
glazing panel comprises in sequence at least a glass substrate, a base antireflective layer comprising at least a base antireflective lower layer and a base antireflective upper layer which is of a different composition to that of the base antireflective lower layer, the base antireflective upper layer comprising a
mixed oxide of Zn and at least one additional material X, in which the ratio X / Zn in the base antireflective upper layer is between 0.02 and 0.5 by weight and in which X is one or more of the materials selected from the group comprising Sn, Al Ga, In, Zr, Sb, Bi, Mg, Nb, Ta and Ti, a first infra-red reflecting layer, a first
barrier layer, a central antireflective layer comprising at least a central antireflective lower layer and a central antireflective upper layer which is of a different composition to that of the central antireflective lower layer, the central antireflective lower layer being in direct contact with the first
barrier layer and the central antireflective upper layer comprising a
mixed oxide of Zn and at least one additional material Y, in which the ratio Y / Zn in the base antireflective upper layer is between 0.02 and 0.5 by weight and in which Y is one or more of the materials selected from the group comprising Sn, Al, Ga, In, Zr, Sb, Bi, Mg, Nb, Ta and Ti, a second infra-red reflecting layer, a second
barrier layer, a top antireflective layer. The
coating stack of such a
glazing panel may provide particularity advantageous levels of the
thermal stability so as to facilitate heat treatment of the
glazing panel.