Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

56565 results about "Neural network nn" patented technology

Color printer characterization using optimization theory and neural networks

A color management method/apparatus generates image color matching and International Color Consortium (ICC) color printer profiles using a reduced number of color patch measurements. Color printer characterization, and the generation of ICC profiles usually require a large number of measured data points or color patches and complex interpolation techniques. This invention provides an optimization method/apparatus for performing LAB to CMYK color space conversion, gamut mapping, and gray component replacement. A gamut trained network architecture performs LAB to CMYK color space conversion to generate a color profile lookup table for a color printer, or alternatively, to directly control the color printer in accordance with the a plurality of color patches that accurately. represent the gamut of the color printer. More specifically, a feed forward neural network is trained using an ANSI/IT-8 basic data set consisting of 182 data points or color patches, or using a lesser number of data points such as 150 or 101 data points when redundant data points within linear regions of the 182 data point set are removed. A 5-to-7 neuron neural network architecture is preferred to perform the LAB to CMYK color space conversion as the profile lookup table is built, or as the printer is directly controlled. For each CMYK signal, an ink optimization criteria is applied, to thereby control ink parameters such as the total quantity of ink in each CMYK ink printed pixel, and/or to control the total quantity of black ink in each CMYK ink printed pixel.
Owner:UNIV OF COLORADO THE REGENTS OF

Spatio-temporal pattern recognition using a spiking neural network and processing thereof on a portable and/or distributed computer

A system and method for characterizing a pattern, in which a spiking neural network having at least one layer of neurons is provided. The spiking neural network has a plurality of connected neurons for transmitting signals between the connected neurons. A model for inducing spiking in the neurons is specified. Each neuron is connected to a global regulating unit for transmitting signals between the neuron and the global regulating unit. Each neuron is connected to at least one other neuron for transmitting signals from this neuron to the at least one other neuron, this neuron and the at least one other neuron being on the same layer. Spiking of each neuron is synchronized according to a number of active neurons connected to the neuron. At least one pattern is submitted to the spiking neural network for generating sequences of spikes in the spiking neural network, the sequences of spikes (i) being modulated over time by the synchronization of the spiking and (ii) being regulated by the global regulating unit. The at least one pattern is characterized according to the sequences of spikes generated in the spiking neural network.
Owner:ROUAT JEAN +2

Long-term memory in a video analysis system

A long-term memory used to store and retrieve information learned while a video analysis system observes a stream of video frames is disclosed. The long-term memory provides a memory with a capacity that grows in size gracefully, as events are observed over time. Additionally, the long-term memory may encode events, represented by sub-graphs of a neural network. Further, rather than predefining a number of patterns recognized and manipulated by the long-term memory, embodiments of the invention provide a long-term memory where the size of a feature dimension (used to determine the similarity between different observed events) may grow dynamically as necessary, depending on the actual events observed in a sequence of video frames.
Owner:MOTOROLA SOLUTIONS INC

Image classification method based on convolution neural network

The invention discloses an image classification method based on a convolution neural network. The method comprises the following steps: constructing a deep convolution neural network; improving the deep convolution neural network; training and testing the deep convolution neural network; and optimizing the network parameter. By using the image classification method disclosed by the invention, the improvement and the optimization are respectively performed on the network structure and multiple parameters of the convolution neural network, the recognition rate of the deep convolution neural network can be effectively improved, and the accuracy of the image classification is improved.
Owner:EAST CHINA UNIV OF TECH

Method and system for detection and classification of cells using convolutional neural networks

An artificial neural network system implemented on a computer for cell segmentation and classification of biological images. It includes a deep convolutional neural network as a feature extraction network, a first branch network connected to the feature extraction network to perform cell segmentation, and a second branch network connected to the feature extraction network to perform cell classification using the cell segmentation map generated by the first branch network. The feature extraction network is a modified VGG network where each convolutional layer uses multiple kernels of different sizes. The second branch network takes feature maps from two levels of the feature extraction network, and has multiple fully connected layers to independently process multiple cropped patches of the feature maps, the cropped patches being located at a centered and multiple shifted positions relative to the cell being classified; a voting method is used to determine the final cell classification.
Owner:KONICA MINOLTA LAB U S A INC

Neural network classifier for separating audio sources from a monophonic audio signal

A neural network classifier provides the ability to separate and categorize multiple arbitrary and previously unknown audio sources down-mixed to a single monophonic audio signal. This is accomplished by breaking the monophonic audio signal into baseline frames (possibly overlapping), windowing the frames, extracting a number of descriptive features in each frame, and employing a pre-trained nonlinear neural network as a classifier. Each neural network output manifests the presence of a pre-determined type of audio source in each baseline frame of the monophonic audio signal. The neural network classifier is well suited to address widely changing parameters of the signal and sources, time and frequency domain overlapping of the sources, and reverberation and occlusions in real-life signals. The classifier outputs can be used as a front-end to create multiple audio channels for a source separation algorithm (e.g., ICA) or as parameters in a post-processing algorithm (e.g. categorize music, track sources, generate audio indexes for the purposes of navigation, re-mixing, security and surveillance, telephone and wireless communications, and teleconferencing).
Owner:DTS

Detecting, classifying, and tracking abnormal data in a data stream

The present invention extends to methods, systems, and computer program products for detecting, classifying, and tracking abnormal data in a data stream. Embodiments include an integrated set of algorithms that enable an analyst to detect, characterize, and track abnormalities in real-time data streams based upon historical data labeled as predominantly normal or abnormal. Embodiments of the invention can detect, identify relevant historical contextual similarity, and fuse unexpected and unknown abnormal signatures with other possibly related sensor and source information. The number, size, and connections of the neural networks all automatically adapted to the data. Further, adaption appropriately and automatically integrates unknown and known abnormal signature training within one neural network architecture solution automatically. Algorithms and neural networks architecture are data driven, resulting more affordable processing. Expert knowledge can be incorporated to enhance the process, but sufficient performance is achievable without any system domain or neural networks expertise.
Owner:DATA FUSION & NEURAL NETWORKS

Data storage system with trained predictive cache management engine

In a data storage system, a cache is managed by a predictive cache management engine that evaluates cache contents and purges entries unlikely to receive sufficient future cache hits. The engine includes a single output back propagation neural network that is trained in response to various event triggers. Accesses to stored datasets are logged in a data access log; conversely, log entries are removed according to a predefined expiration criteria. In response to access of a cached dataset or expiration of its log entry, the cache management engine prepares training data. This is achieved by determining characteristics of the dataset at various past times between the time of the access / expiration and a time of last access, and providing these characteristics and the times of access as input to train the neural network. As another part of training, the cache management engine provides the neural network with output representing the expiration or access of the dataset. According to a predefined schedule, the cache management engine operates the trained neural network to generate scores for cached datasets, these scores ranking the datasets relative to each other. According to this or a different schedule, the cache management engine reviews the scores, identifies one or more datasets with the least scores, and purges the identified datasets from the cache.
Owner:IBM CORP

Steel plate surface defect detection method based on multistage characteristics of convolutional neural network

The invention provides a steel plate surface defect detection method based on multistage characteristics of a convolutional neural network and relates to the technical field of steel plate defect detection. The method comprises the following steps: selecting a baseline network, pre-training the baseline network, and establishing a special defect detection data set for fine-tuning training; building an overall detection network and a multistage characteristic fusion network, and merging the two networks to obtain a defect detection network; finally, setting a loss function of the defect detection network, training hyper-parameters, and training the defect detection network to enable the baseline network, the multistage characteristic fusion network and a RPN (Risk Priority Number) to sharethe convolutional layer and calculated amount, thereby obtaining the completely trained defect detection network model and further detecting the steel plate surface defects. The steel plate surface defect detection method based on multistage characteristics of the convolutional neural network provided by the invention has strong defect classification ability, and specific types and accurate position information of the defects can be completely acquired. Moreover, configuration of hardware needed by detection is reduced.
Owner:NORTHEASTERN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products