Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

308 results about "Spiking neural network" patented technology

Spiking neural networks (SNNs) are artificial neural networks that more closely mimic natural neural networks. In addition to neuronal and synaptic state, SNNs incorporate the concept of time into their operating model. The idea is that neurons in the SNN do not fire at each propagation cycle (as it happens with typical multi-layer perceptron networks), but rather fire only when a membrane potential – an intrinsic quality of the neuron related to its membrane electrical charge – reaches a specific value. When a neuron fires, it generates a signal that travels to other neurons which, in turn, increase or decrease their potentials in accordance with this signal.

Spatio-temporal pattern recognition using a spiking neural network and processing thereof on a portable and/or distributed computer

A system and method for characterizing a pattern, in which a spiking neural network having at least one layer of neurons is provided. The spiking neural network has a plurality of connected neurons for transmitting signals between the connected neurons. A model for inducing spiking in the neurons is specified. Each neuron is connected to a global regulating unit for transmitting signals between the neuron and the global regulating unit. Each neuron is connected to at least one other neuron for transmitting signals from this neuron to the at least one other neuron, this neuron and the at least one other neuron being on the same layer. Spiking of each neuron is synchronized according to a number of active neurons connected to the neuron. At least one pattern is submitted to the spiking neural network for generating sequences of spikes in the spiking neural network, the sequences of spikes (i) being modulated over time by the synchronization of the spiking and (ii) being regulated by the global regulating unit. The at least one pattern is characterized according to the sequences of spikes generated in the spiking neural network.
Owner:ROUAT JEAN +2

Apparatus and methods for activity-based plasticity in a spiking neuron network

Apparatus and methods for plasticity in spiking neuron network. The network may comprise feature-specific units capable of responding to different objects (red and green color). Plasticity mechanism may be configured based on difference between two similarity measures related to activity of different unit types obtained during network training. One similarity measure may be based on activity of units of the same type (red). Another similarity measure may be based on activity of units of one type (red) and another type (green). Similarity measures may comprise a cross-correlogram and / or mutual information determined over an activity window. Several similarity estimates, corresponding to different unit-to-unit pairs may be combined. The combination may comprise a weighted average. During network operation, the activity based plasticity mechanism may be used to potentiate connections between units of the same type (red-red). The plasticity mechanism may be used to depress connections between units of different types (red-green).
Owner:BRAIN CORP

Proportional-integral-derivative controller effecting expansion kernels comprising a plurality of spiking neurons associated with a plurality of receptive fields

Adaptive proportional-integral-derivative controller apparatus of a plant may be implemented. The controller may comprise an encoder block utilizing basis function kernel expansion technique to encode an arbitrary combination of inputs into spike output. The basis function kernel may comprise one or more operators configured to manipulate basis components. The controller may comprise spiking neuron network operable according to reinforcement learning process. The network may receive the encoder output via a plurality of plastic connections. The process may be configured to adaptively modify connection weights in order to maximize process performance, associated with a target outcome. Features of the input may be identified and used for enabling the controlled plant to achieve the target outcome.
Owner:BRAIN CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products