Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

845 results about "Formation fluid" patented technology

Formation fluid refers to the naturally occurring liquids and gases contained in geologic formations. Fluids introduced during the drilling process are called drilling fluids. Fluids in an oil or gas reservoir are called reservoir fluids. The fluids flowing from the wellhead of an oil or gas well are called production fluids.

Method for determining formation fluid entry into or drilling fluid loss from a borehole using a dynamic annular pressure control system

ActiveUS20070151762A1Rate of pumping constantIncrease fluid pressureSurveyDrilling rodsDrill bitFormation fluid
A method for controlling formation pressure during drilling includes pumping a drilling fluid through a drill string in a borehole, out a drill bit at the end of the drill string into an annular space. The drilling fluid is discharged from the annular space proximate the Earth's surface. At least one of a flow rate of the drilling fluid into the borehole and a fluid flow rate out of the annular space is measured. Pressure of the fluid in the annular space proximate the Earth's surface and pressure of the fluid proximate the bottom of the borehole are measured. Pressure of the fluid proximate the bottom of the borehole is estimated using the measured flow rate, annular space pressure and density of the drilling fluid. A warning signal is generated if difference between the estimated pressure and measured pressure exceeds a selected threshold.
Owner:SMITH INT INC

Closed loop additive injection and monitoring system for oilfield operations

A system is provided that monitors at the wellsite injection of additives into formation fluids recovered through wellbores and controls the supply of such additives from remote locations. A pump supplies the selected additive from a source at the wellsite into the wellbore via a suitable supply line. A flow meter in the supply line measures the flow rate of the additive through the supply line and generates signals representative of the flow rate. A controller at the wellsite determines the flow rate from the flow meter signals and in response thereto controls the pump to control the flow rate of the additive to the well. The wellsite controller interfaces with a suitable two-way communication link and transmits signals and data representative of the flow rate, and other parameters to a second remote controller. The remote controller transmits command signals to the wellsite controller representative of any change desired for the flow rate. The wellsite controller is microprocessor based and may be programmed at the wellsite or by the remote controller to adjust the flow rate. The system of the present invention may be configured for multiple wells, with each well having a separate wellsite controller or a common wellsite controller.
Owner:BAKER HUGHES INC

Method and apparatus for an advanced optical analyzer

The present invention provides a sample tank having a window for introduction of electromagnetic energy into the sample tank for analyzing a formation fluid sample down hole or at the surface without disturbing the sample. Near infrared, mid infrared and visible light analysis is performed on the sample to provide a downhole in situ or surface on site analysis of sample properties and contamination level. The onsite analysis comprises determination of gas oil ratio, API gravity and various other parameters which can be estimated by a trained neural network or chemometric equation. A flexural mechanical resonator is also provided to measure fluid density and viscosity from which additional parameters can be estimated by a trained neural network or chemometric equation. The sample tank is pressurized to obviate adverse pressure drop or other effects of diverting a small sample.
Owner:BAKER HUGHES INC

Facilitating oilfield development with downhole fluid analysis

Formation fluid data based on measurements taken downhole under natural conditions is utilized to help identify reservoir compartments. A geological model of the reservoir including expected pressure and temperature conditions is integrated with a predicted fluid model fitted to measured composition and PVT data on reservoir fluid samples or representative analog. Synthetic downhole fluid analysis (DFA) logs created from the predictive fluid model can be displayed along the proposed borehole trajectory by geological modeling software prior to data acquisition. During a downhole fluid sampling operation, actual measurements can be displayed next to the predicted logs. If agreement exists between the predicted and measured fluid samples, the geologic and fluid models are validated. However, if there is a discrepancy between the predicted and measured fluid samples, the geological model and the fluid model need to be re-analyzed, e.g., to identify reservoir fluid compartments. A quantitative comparative analysis of the sampled fluids can be performed against other samples in the same borehole or in different boreholes in the field or region to calculate the statistical similarity of the fluids, and thus the possible connectivity between two or more reservoir regions.
Owner:SCHLUMBERGER TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products