Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

25517 results about "Mesh grid" patented technology

System for rebuilding dispersed data

A digital data file storage system is disclosed in which original data files to be stored are dispersed using some form of information dispersal algorithm into a number of file “slices” or subsets in such a manner that the data in each file share is less usable or less recognizable or completely unusable or completely unrecognizable by itself except when combined with some or all of the other file shares. These file shares are stored on separate digital data storage devices as a way of increasing privacy and security. As dispersed file shares are being transferred to or stored on a grid of distributed storage locations, various grid resources may become non-operational or may operate below at a less than optimal level. When dispersed file shares are being written to a dispersed storage grid which not available, the grid clients designates the dispersed data shares that could not be written at that time on a Rebuild List. In addition when grid resources already storing dispersed data become non-available, a process within the dispersed storage grid designates the dispersed data shares that need to be recreated on the Rebuild List. At other points in time a separate process reads the set of Rebuild Lists used to create the corresponding dispersed data and stores that data on available grid resources.
Owner:PURE STORAGE

Billing system for information dispersal system

ActiveUS20070174192A1Less usableLess recognizableFinanceComputer security arrangementsInformation dispersalOriginal data
A billing process is disclosed for a information dispersal system or digital data storage system. In one embodiment of the invention, the original data to be stored is separated into a number of data “slices” or shares in such a manner that the data in each subset is less usable or less recognizable or completely unusable or completely unrecognizable by itself except when combined with some or all of the other data subsets. These data subsets are stored on separate digital data storage devices as a way of increasing privacy and security. As dispersed file shares are being stored or removed from a grid of distributed storage locations, a set of metadata tables are created, separate from the dispersed file share storage, to maintain information about the original data size of each block, file or set of file shares dispersed on the grid. The original data size information in these separate metadata tables is used to determine usage information based upon the original file size even though the file has been dispersed onto a storage grid that contains file slices who size may not relate to the original file size and the file slices may have been compressed by the system in order to reduce storage space or improve transmission time. As such, the billing process is able to enable a broad range of commercial billing options for billing for commercial data services on an information dispersal grid.
Owner:PURE STORAGE

Method and apparatus for multi-touch tactile touch panel actuator mechanisms

A method and apparatus of actuator mechanisms for a multi-touch tactile touch panel are disclosed. The tactile touch panel includes an electrical insulated layer and a tactile layer. The top surface of the electrical insulated layer is capable of receiving an input from a user. The tactile layer includes a grid or an array of haptic cells. The top surface of the haptic layer is situated adjacent to the bottom surface of the electrical insulated layer, while the bottom surface of the haptic layer is situated adjacent to a display. Each haptic cell further includes at least one piezoelectric material, Micro-Electro-Mechanical Systems (“MEMS”) element, thermal fluid pocket, MEMS pump, resonant device, variable porosity membrane, laminar flow modulation, or the like. Each haptic cell is configured to provide a haptic effect independent of other haptic cells in the tactile layer.
Owner:IMMERSION CORPORATION

Simulation gridding method and apparatus including a structured areal gridder adapted for use by a reservoir simulator

A Flogrid Simulation Gridding Program includes a Flogrid structured gridder. The structured gridder includes a structured areal gridder and a block gridder. The structured areal gridder will build an areal grid on an uppermost horizon of an earth formation by performing the following steps: (1) building a boundary enclosing one or more fault intersection lines on the horizon, and building a triangulation that absorbs the boundary and the faults; (2) building a vector field on the triangulation; (3) building a web of control lines and additional lines inside the boundary which have a direction that corresponds to the direction of the vector field on the triangulation, thereby producing an areal grid; and (4) post-processing the areal grid so that the control lines and additional lines are equi-spaced or smoothly distributed. The block gridder of the structured gridder will drop coordinate lines down from the nodes of the areal grid to complete the construction of a three dimensional structured grid. A reservoir simulator will receive the structured grid and generate a set of simulation results which are displayed on a 3D Viewer for observation by a workstation operator.
Owner:SCHLUMBERGER TECH CORP

Methods for forming arrays of small, closely spaced features

Methods of forming arrays of small, densely spaced holes or pillars for use in integrated circuits are disclosed. Various pattern transfer and etching steps can be used, in combination with pitch-reduction techniques, to create densely-packed features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form superimposed patterns of crossing elongate features with pillars at the intersections. Spacers are simultaneously applied to sidewalls of both sets of crossing lines to produce a pitch-doubled grid pattern. The pillars facilitate rows of spacers bridging columns of spacers.
Owner:MICRON TECH INC

Process for the preparation of nanostructured materials

The present invention comprises a novel process for the preparation of carbon based structured materials with controlled topology, morphology and functionality. The nanostructured materials are prepared by controlled carbonization, or pyrolysis, of precursors comprising phase separated copolymers. The precursor materials are selected to phase separate and self organize in bulk, in solution, in the presence of phase selective solvents, at surfaces, interfaces or during fabrication, into articles, fibers or films exhibiting well-defined, self-organized morphology or precursors of well-defined, self-organized, bi- or tri-phasic morphology. Compositional control over the (co)polymers provides control over the structure of the phase separated precursor whose organization therein dictates the nanostructure of the material obtained after carbonization or pyrolysis, wherein each dimension of the formed structure can be predetermined. When the precursor morphology is selected to comprise cylindrical domains this procedure additionally allows for the direct formation of two dimensional nanowire grids or arrays of oriented nanostructures on surfaces. When these nanowire grids or arrays are perpendicularly oriented to the surface applications include field emitters, high surface area electrodes, electronic devices such as diodes and transistors, tools for AMF tips and elements of molecular electronics. When the first nanostructured morphology is selected to form cylinders parallel to the surface then nanowire arrays are formed after pyrolysis. When the composition of the first nanostructured morphology is selected to comprise a continuous precursor matrix then a continuous carbon based nanostructured material is formed. The internal structure of the carbon based material can be selected to comprise perpendicular pores or an interconnected array of pores. The carbon based structures can additionally find application in photovoltaics, supercapacitors, batteries, fuel cells, computer memory, carbon electrodes, carbon foams, actuators and hydrogen storage.
Owner:CARNEGIE MELLON UNIV

Plasma immersion ion implantation reactor having an ion shower grid

A plasma immersion ion implantation process for implanting a selected species at a desired ion implantation depth profile in a workpiece is carried out in a reactor chamber with an ion shower grid that divides the chamber into an upper ion generation region and a lower process region, the ion shower grid having plural elongate orifices oriented in a non-parallel direction relative to a surface plane of the ion shower grid. The process includes placing a workpiece in the process region, the workpiece having a workpiece surface generally facing the surface plane of the ion shower grid, and furnishing the selected species into the ion generation region in gaseous, molecular or atomic form and evacuating the process region at an evacuation rate sufficient to create a pressure drop across the ion shower grid from the ion generation region to the process region of about a factor of at least four. The process further includes applying plasma source power to generate a plasma of the selected species in the ion generation region, and applying a grid potential to the ion shower grid to create a flux of ions from the plasma through the grid and into the process region. The process also includes applying a sufficient bias voltage to at least one of: (a) the workpiece, (b) the grid, relative to at least one of: (a) the workpiece, (b) a plasma in the ion generation region, (c) a surface of the chamber, to accelerate the flux of ions to a kinetic energy distribution generally corresponding to the desired ion implantation depth profile in the workpiece.
Owner:APPLIED MATERIALS INC

Contact fabrication of emitter wrap-through back contact silicon solar cells

Back contact solar cells including rear surface structures and methods for making same. The rear surface has small contact areas through at least one dielectric layer, including but not limited to a passivation layer, a nitride layer, a diffusion barrier, and / or a metallization barrier. The dielectric layer is preferably screen printed. Large grid areas overlay the dielectric layer. The methods provide for increasing efficiency by minimizing p-type contact areas and maximizing n-type doped regions on the rear surface of a p-type substrate.
Owner:APPLIED MATERIALS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products