Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3719 results about "Cathode electrode" patented technology

A cathode is an electrode through which electrical current exits a polarized electrical device. Its opposite is the anode, through which electrical current enters the electrical device.

Dual plasma beam sources and method

A pair of plasma beam sources are connected across an AC power supply to alternatively produce an ion beam for depositing material on a substrate transported past the ion beams. Each plasma beam source includes a discharge cavity having a first width and a nozzle extending outwardly therefrom to emit the ion beam. The aperture or outlet of the nozzle has a second width, which second width is less than the first width. An ionizable gas is introduced to the discharge cavity. At least one electrode connected to the AC power supply, alternatively serving as an anode or a cathode, is capable of supporting at least one magnetron discharge region within the discharge cavity when serving as a cathode electrode. A plurality of magnets generally facing one another, are disposed adjacent each discharge cavity to create a magnetic field null region within the discharge cavity.
Owner:GENERAL PLASMA

Organic electroluminescent device

An organic electroluminescent device includes an anode electrode layer; a cathode electrode layer opposed to the anode electrode layer; a hole injection layer provided adjacent to the anode electrode layer an organic structure including at least one light-emissive layer_or at least one light-emissive unit having at least one light-emissive layer; between the anode electrode layer and the cathode electrode layer. At least one of the anode electrode layer and the cathode electrode layer is transparent. The hole injection layer includes a mixed layer of a metal oxide and an organic compound. The mixed layer is formed upon co-deposition of the metal oxide and the organic compound.
Owner:MITSUBISHI HEAVY IND LTD +1

Oxidative reductive potential water solution and process for producing same

An oxidative reduction potential water solution that is stable for at least twenty-four hours. The invention also relates to an ORP water solution comprising anode water and cathode water. Another aspect of the invention is an apparatus for producing an ORP water solution comprising at least two electrolysis cells, wherein each cell comprises an anode chamber, cathode chamber and salt solution chamber located between the anode and cathode chambers, wherein the anode chamber is separated from the salt solution chamber by an anode electrode and a first membrane, and the cathode chamber is separated from the salt solution chamber by a cathode electrode and a second membrane.
Owner:SONOMA PHARMA INC

Field emission display and method for fabricating the same

Field emission display and method for fabricating the same, the field emission display including a cathode array having a cathode electrode formed on a substrate, insulating layers and carbon nanotube films for use as emitter electrodes formed alternately on the cathode electrode, and a gate electrode formed on the insulating layer, thereby permitting fabrication of a large sized cathode plate at a low cost because the film is formed by screen printing and exposure, which can reduce the cumbersome steps in fabrication of the related art Spindt emitter tip, and both a low voltage and a high voltage FEDs because the carbon nanotube film used as the emitter has a low work function, with an easy and stable electron emission capability.
Owner:LG ELECTRONICS INC

Pixel circuit, display unit, and pixel circuit drive method

ActiveUS20070057873A1No deterioration of luminanceNo deteriorationTransistorStatic indicating devicesDisplay deviceCapacitor
A pixel circuit, display device, and method of driving a pixel circuit enabling source-follower output with no deterioration of luminance even with a change of the current-voltage characteristic of the light emitting element along with elapse, enabling a source-follower circuit of n-channel transistors, and able to use an n-channel transistor as an EL drive transistor while using current anode-cathode electrodes, wherein a source of a TFT 111 as a drive transistor is connected to an anode of a light emitting element 114, a drain is connected to a power source potential VCC, a capacitor C111 is connected between a gate and source of the TFT 111, and a source potential of the TFT 111 is connected to a fixed potential through a TFT 113 as a switching transistor.
Owner:SONY CORP

Nanowire-based membrane electrode assemblies for fuel cells

The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
Owner:ONED MATERIAL INC

Organic electroluminescent device

An organic electroluminescent device includes at least two light-emissive units provided between a cathode electrode and an anode electrode opposed to the cathode electrode, each of the light-emissive units including at least one light-emissive layer. The light-emissive units are partitioned from each other by at least one charge generation layer, the charge generation layer being an electrically insulating layer having a resistivity of not less than 1.0×102 Ωcm.
Owner:ROHM CO LTD +2

Organic electroluminescent devices

An organic electroluminescent device includes an anode electrode layer, a cathode electrode layer opposed to the anode electrode layer, and a luminous layer containing an organic compound disposed between the anode electrode layer and the cathode electrode layer. An excitation state of the organic compound in the luminous layer is created upon a hole injection from the anode electrode layer, and an electron injection from the cathode electrode layer, thereby causing light emission in the organic electroluminescent device. An electron-accepting material is provided in at least one hole transportation layer capable of transporting holes injected from the anode electrode layer disposed between the anode electrode layer and the cathode electrode layer, and the electron-accepting material is positioned at a site which is not adjacent to the anode electrode layer.
Owner:ROHM CO LTD

Treatment of indications using electrical stimulation

In one embodiment, a method includes implanting an implant entirely under the subject's skin. The implant includes a passive electrical conductor of sufficient length to extend from subcutaneous tissue located below one of a surface cathodic electrode and a surface anodic electrode to the tibial nerve. The surface electrodes are positioned in spaced relationship on the subject's skin, with one of the electrodes positioned over the pick-up end of the electrical conductor such that the portion of the current is transmitted through the conductor to the tibial nerve, and such that the current flows through the tibial nerve and returns to the other of the surface cathodic electrode and the surface anodic electrode. An electrical current is applied between the surface cathodic electrode and the surface anodic electrode to cause the portion of the electrical current to flow through the implant to stimulate the tibial nerve.
Owner:BIONESS

Light emitting display device

A light emitting display device 1 characterized by forming one display screen by combining a plurality of light emitting display units comprising intensity control means for measuring a light emission intensity by a light emitting element (organic EL element 20) which is formed above / on a transparent substrate 11 and which includes an anode electrode 12, a cathode electrode 16, at least one organic light emission functional layer (13,14,15) between the electrodes to control the light emission intensity of the light emitting element above / on the substrate 11 within a predetermined range and deterioration state reporting means for detecting a deterioration state of the light emitting element above / on the substrate 11 to report the state.
Owner:TOHOKU PIONEER CORP

Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol

An environmentally beneficial method of producing methanol from varied sources of carbon dioxide including flue gases of fossil fuel burning power plants, industrial exhaust gases or the atmosphere itself. Converting carbon dioxide by an electrochemical reduction of carbon dioxide in a divided electrochemical cell that includes an anode in one cell compartment and a metal cathode electrode in another cell compartment that also contains an aqueous solution comprising methanol and an electrolyte of one or more alkyl ammonium halides, alkali carbonates or combinations thereof to produce therein a reaction mixture containing carbon monoxide and hydrogen which can be subsequently used to produce methanol while also producing oxygen in the cell at the anode.
Owner:UNIV OF SOUTHERN CALIFORNIA

Systems and Methods for Ranking and Selection of Pacing Vectors

Approaches to rank potential left ventricular (LV) pacing vectors are described. Early elimination tests are performed to determine the viability of LV cathode electrodes. Some LV cathodes are eliminated from further testing based on the early elimination tests. LV cathodes identified as viable cathodes are tested further. Viable LV cathode electrodes are tested for hemodynamic efficacy. Cardiac capture and phrenic nerve activation thresholds are then measured for potential LV pacing vectors comprising a viable LV cathode electrode and an anode electrode. The potential LV pacing vectors are ranked based on one or more of the hemodynamic efficacy of the LV cathodes, the cardiac capture thresholds, and the phrenic nerve activation thresholds.
Owner:CARDIAC PACEMAKERS INC

Sodium ion based aqueous electrolyte electrochemical secondary energy storage device

A secondary hybrid aqueous energy storage device includes an anode electrode, a cathode electrode which is capable of reversibly intercalating sodium cations, a separator, and a sodium cation containing aqueous electrolyte, wherein an initial active cathode electrode material comprises an alkali metal containing active cathode electrode material which deintercalates alkali metal ions during initial charging of the device.
Owner:CARNEGIE MELLON UNIV

Multibeam semiconductor laser, semiconductor light-emitting device and semiconductor device

In a multi-beam semiconductor laser including nitride III–V compound semiconductor layers stacked on one surface of a substrate of sapphire or other material to form laser structures, and including a plurality of anode electrodes and a plurality of cathode electrodes formed on the nitride III–V compound semiconductor layers, one of the anode electrodes is formed to bridge over one of the cathode electrodes via an insulating film, and another anode electrode is formed to bridge over another of the cathode electrodes via an insulating film.
Owner:SONY CORP

Nanowire-based membrane electrode assemblies for fuel cells

ActiveUS20060188774A1Higher catalytic metal utilization rateLow costMaterial nanotechnologyFinal product manufactureNanowirePtru catalyst
The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
Owner:ONED MATERIAL INC

Touch screen device

Disclosed herein is a touch screen device, including: a touch panel; a display panel that is installed under the touch panel; and a plurality of pressure-sensitive sensors that are formed to be spaced from each other on the outer sides between the touch panel and the display panel and include an insulating substrate, electrodes that include anode electrodes and cathode electrodes formed to be spaced from each other on the insulating substrate, and piezo resistors that are formed on the insulating substrate on which the electrodes are formed and have resistance values varied depending on the pressure to be applied. The touch screen device can measure the strength of the contact input as well as the 2D coordinates using the piezo resistors of the pressure-sensitive sensor.
Owner:SAMSUNG ELECTRO MECHANICS CO LTD

Lithium-ion secondary battery

InactiveUS20070026315A1Safer chemistry characteristicLow cathode costPrimary cell to battery groupingFinal product manufactureManganateSpinel
A lithium-ion battery includes a cathode that includes an active cathode material. The active cathode material includes a cathode mixture that includes a lithium cobaltate and a manganate spinel a manganate spinel represented by an empirical formula of Li(1+x1)(Mn1−y1A′y2)2−x2Oz1. The lithium cobaltate and the manganate spinel are in a weight ratio of lithium cobaltate: manganate spinel between about 0.95:0.05 to about 0.55:0.45. A lithium-ion battery pack employs a cathode that includes an active cathode material as described above. A method of forming a lithium-ion battery includes the steps of forming an active cathode material as described above; forming a cathode electrode with the active cathode material; and forming an anode electrode in electrical contact with the cathode via an electrolyte.
Owner:BOSTON POWER INC

Method of routing electrical current to bodily tissues via implanted passive conductors

The invention provides an implant, system and method for electrically stimulating a target tissue to either activate or block neural impulses. The implant provides a conductive pathway for a portion of electrical current flowing between surface electrodes positioned on the skin and transmits that current to the target tissue. The implant has a passive electrical conductor of sufficient length to extend from subcutaneous tissue located below a surface cathodic electrode to the target tissue. The conductor has a pick-up end which forms an electrical termination having a sufficient surface area to allow a sufficient portion of the electrical current to flow through the conductor, in preference to flowing through body tissue between the surface electrodes, such that the target tissue is stimulated to either activate or block neural impulses. The conductor also has a stimulating end which forms an electrical termination for delivering the current to the target body tissue.
Owner:2249020 ALBERTA LTD

Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol

An environmentally beneficial method of producing methanol from varied sources of carbon dioxide including flue gases of fossil fuel burning power plants, industrial exhaust gases or the atmosphere itself. Converting carbon dioxide by an electrochemical reduction of carbon dioxide in a divided electrochemical cell that includes an anode in one cell compartment and a metal cathode electrode in another cell compartment that also contains an aqueous solution comprising methanol and an electrolyte of one or more alkyl ammonium halides, alkali carbonates or combinations thereof to produce therein a reaction mixture containing carbon monoxide and hydrogen which can be subsequently used to produce methanol while also producing oxygen in the cell at the anode.
Owner:UNIV OF SOUTHERN CALIFORNIA

Electroporation electrode configuration and methods

Provided herein are the concept that “singularity-based configuration” electrodes design and method can produce in an ionic substance local high electric fields with low potential differences between electrodes. The singularity-based configuration described here includes: an anode electrode; a cathode electrode; and an insulator disposed between the anode electrode and the cathode electrode. The singularity-based electrode design concept refers to electrodes in which the anode and cathode are adjacent to each other, placed essentially co-planar and are separated by an insulator. The essentially co-planar anode / insulator / cathode configuration bound one surface of the volume of interest and produce desired electric fields locally, i.e., in the vicinity of the interface between the anode and cathode. In an ideal configuration, the interface dimension between the anode and the cathode tends to zero and becomes a point of singularity.
Owner:RGT UNIV OF CALIFORNIA

Reverse conducting semiconductor device and a fabrication method thereof

To provide a reverse conducting semiconductor device in which an insulated gate bipolar transistor and a free wheeling diode excellent in recovery characteristic are monolithically formed on a substrate, the free wheeling diode including; a second conductive type base layer to constitute the insulated gate bipolar transistor; a first conductive type base layer for constituting the insulated gate bipolar transistor, an anode electrode which is an emitter electrode covering a first conductive type emitter layer and the second conductive type base layer, a cathode electrode which is a collector electrode covering the first conductive type base layer and a second conductive type collector layer formed on the part of the first conductive type base layer, wherein a short lifetime region is formed on a part of the first conductive type base layer.
Owner:MITSUBISHI ELECTRIC CORP

Organic electroluminescent device having an electrically insulating charge generation layer

An organic electroluminescent device includes at least two light-emissive units provided between a cathode electrode and an anode electrode opposed to the cathode electrode, each of the light-emissive units including at least one light-emissive layer. The light-emissive units are partitioned from each other by at least one charge generation layer, the charge generation layer being an electrically insulating layer having a resistivity of not less than 1.0×102 Ωcm.
Owner:ROHM CO LTD +2

Implantable biofuel cell system based on nanostructures

A bio-implantable electrochemical cell system for active implantable medical devices. In one embodiment, the fuel cell includes an electrode structure consisting of immobilized anode and cathode enzymes deposited on nanostructured high-surface-area metal nanowires or carbon nanotube electrodes. The anode enzyme comprises immobilized glucose oxidase and the cathode enzyme comprises immobilized laccase. Glucose is oxidized at the surface of the anode and oxygen is reduced at the surface of the cathode. The coupled glucose oxidation-oxygen reduction reactions provide a self-generating current source. In another embodiment, the nanowires or carbon nanotubes, along with the adjacent surface anode and cathode electrodes, are coated with immobilized glucose oxidase and immobilized laccase containing biocolloidal substrates, respectively. This results in the precise construction of an enzyme architecture with control at the molecular level, while increasing the reactive surface area and corresponding output power by at least two orders of magnitude.
Owner:NANOSOLUTIONS

Plasma source and plasma processing apparatus

ActiveUS20070017636A1Generate efficientlyGenerate a high-density plasma highly efficientlyMaterial nanotechnologyCarbon compoundsEngineeringPlasma processing
A plasma source (1) is composed of a chamber (2) to which a gas should be supplied and a hollow cathode electrode member (4) which is arranged on the gas flow-out side of the chamber (2) and has a plurality of electrode holes (3) through which the gas can flow. In such a plasma source (1), microcathode plasma discharge can be performed in the electrode holes (3) of the hollow cathode electrode member (4).
Owner:TOSHIO GOTO +3

Dual plasma beam sources and method

A pair of plasma beam sources are connected across an AC power supply to alternatively produce an ion beam for depositing material on a substrate transported past the ion beams. Each plasma beam source includes a discharge cavity having a first width and a nozzle extending outwardly therefrom to emit the ion beam. The aperture or outlet of the nozzle has a second width, which second width is less than the first width. An ionizable gas is introduced to the discharge cavity. At least one electrode connected to the AC power supply, alternatively serving as an anode or a cathode, is capable of supporting at least one magnetron discharge region within the discharge cavity when serving as a cathode electrode. A plurality of magnets generally facing one another, are disposed adjacent each discharge cavity to create a magnetic field null region within the discharge cavity.
Owner:GENERAL PLASMA

Flashlight with heat-dissipation device

A flashlight structure with a heat-dissipation device is disclosed. The flashlight structure includes a base having a conducting point isolated with the base; a high-power luminary disposed on the base and having an anode electrode connecting with the conducting point and a cathode electrode connecting with the base; a power source having a positive terminal connecting to the conducting point and a negative terminal connecting to the base for providing the luminary with power; and a housing including the base and having plural heat sink for dissipating the heat produced by the high-power luminary, thereby preventing the flashlight from damage of device or diminution of use life.
Owner:YEN MEI FENG

Organic Light-Emitting Display Device and Method of Fabricating the Same

An organic electro-luminescence device capable of reducing a resistance of a cathode electrode to enhance brightness uniformity at each location within the device is described. The organic electro-luminescence device includes a bank layer formed over a substrate, the bank layer including a first, second, and third portion. A first electrode is formed between the first and second portions of the bank layer. An auxiliary electrode is formed where at least a part of the auxiliary electrode is formed between the second and third portions of the bank layer. A pattern is formed on the auxiliary electrode. An organic material layer formed between the first and second portions of the bank layer. A second electrode formed on the organic material layer, where at least a portion of the second electrode is electrically coupled to the auxiliary electrode.
Owner:LG DISPLAY CO LTD

Lithium-ion secondary battery

InactiveUS20080008933A1Safer chemistry characteristicLow cathode costPrimary cell to battery groupingElectrode carriers/collectorsManganateManganese
In one embodiment, an active cathode material comprises a mixture that includes: at least one of a lithium cobaltate and a lithium nickelate; and at least one of a manganate spinel represented by an empirical formula of Li(1+x1)(Mn1−y1A′y1)2−x1Oz1 and an olivine compound represented by an empirical formula of Li(1−x2)A″x2MPO4. In another embodiment, an active cathode material comprises a mixture that includes: a lithium nickelate selected from the group consisting of LiCoO2-coated LiNi0.8Co0.15Al0.05O2, and Li(Ni1 / 3Co1 / 3Mn1 / 3)O2; and a manganate spinel represented by an empirical formula of Li(1+x7)Mn2−y7Oz7. A lithium-ion battery and a battery pack each independently employ a cathode that includes an active cathode material as described above. A method of forming a lithium-ion battery includes the steps of forming an active cathode material as described above; forming a cathode electrode with the active cathode material; and forming an anode electrode in electrical contact with the cathode via an electrolyte. A system comprises a portable electronic device and a battery pack or lithium-ion battery as described above.
Owner:BOSTON POWER INC

Cathode electrode, method for manufacturing the same and lithium battery containing the same

Disclosed is a cathode electrode having a cathode active material layer stacked on a current collector. The cathode active material layer includes a porous conductive material having a surface coated with sulfur and / or a sulfur-containing organic compound and / or pores filled with sulfur and / or a sulfur-containing organic compound. A lithium secondary battery employing the cathode electrode also is disclosed. The cathode electrode is structurally stable during charging and discharging since the structure of the cathode active material layer can be maintained even at the phase transition of sulfur during charging and discharging.
Owner:SAMSUNG SDI CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products