Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

59results about How to "Surface roughening" patented technology

Method and apparatus for flexible fluid delivery for cooling desired hot spots in a heat producing device

A heat exchanger apparatus and method of manufacturing comprising: an interface layer for cooling a heat source and configured to pass fluid therethrough, the interface layer having an appropriate thermal conductivity and a manifold layer for providing fluid to the interface layer, wherein the manifold layer is configured to achieve temperature uniformity in the heat source preferably by cooling interface hot spot regions. A plurality of fluid ports are configured to the heat exchanger such as an inlet port and outlet port, whereby the fluid ports are configured vertically and horizontally. The manifold layer circulates fluid to a predetermined interface hot spot region in the interface layer, wherein the interface hot spot region is associated with the hot spot. The heat exchanger preferably includes an intermediate layer positioned between the interface and manifold layers and optimally channels fluid to the interface hot spot region.
Owner:COOLIGY INC

High-brightness gallium-nitride based light emitting diode structure

InactiveUS20060086942A1Improve external quantum efficiency and luminous efficiencySurface rougheningSemiconductor devicesRefractive indexGallium
A GaN-based LED structure is provided so that the brightness and luminous efficiency of the GaN-based LED are enhanced effectively. The greatest difference between the GaN-based LEDs according to the invention and the prior arts lies in the addition of a masking buffer layer on top of the p-type contact layer and a p-type roughened contact layer on top of the masking buffer layer. The masking buffer layer could be formed using MOCVD to deposit SixNy (x,y≧1), MgwNz (w,z≧1), or AlsIntGa1-s-tN (0≦s,t<1, s+t≦1) heavily doped with Si and / or Mg. The masking buffer layer is actually a mask containing multiple randomly distributed clusters. Then, on top of the masking buffer layer, a p-type roughened contact layer made of p-type AluInvGa1-u-vN (0≦u,v<1, u+v≦1) is developed. The p-type roughened contact layer does not grow directly on top of the masking buffer layer. Instead, the p-type roughened contact layer starts from the top surface of the underlying p-type contact layer not covered by the masking buffer layer's clusters. The p-type roughened contact layer then grows upward until it passes (but does not cover) the mask of the masking buffer layer for a specific distance. The total internal reflection that could have been resulted from the GaN-based LEDs' higher index of refraction than that of the atmosphere could be avoided. The GaN-based LEDs according to the present invention therefore have superior external quantum efficiency and luminous efficiency.
Owner:FORMOSA EPITAXY INCORPORATION +1

High-brightness gallium-nitride based light emitting diode structure

InactiveUS7049638B2Improve external quantum efficiency and luminous efficiencySurface rougheningSemiconductor devicesRefractive indexContact layer
A GaN-based LED structure is provided so that the brightness and luminous efficiency of the GaN-based LED are enhanced effectively. The greatest difference between the GaN-based LEDs according to the invention and the prior arts lies in the addition of a masking buffer layer on top of the p-type contact layer and a p-type roughened contact layer on top of the masking buffer layer. The masking buffer layer could be formed using MOCVD to deposit SixNy (x,y≧1), MgwNz (w,z≧1), or AlsIntGa1-s-tN (0≦s,t<1, s+t≦1) heavily doped with Si and / or Mg. The masking buffer layer is actually a mask containing multiple randomly distributed clusters. Then, on top of the masking buffer layer, a p-type roughened contact layer made of p-type AluInGa1-u-vN (0≦u,v<1, u+v≦1) is developed. The p-type roughened contact layer does not grow directly on top of the masking buffer layer. Instead, the p-type roughened contact layer starts from the top surface of the underlying p-type contact layer not covered by the masking buffer layer's clusters. The p-type roughened contact layer then grows upward until it passes (but does not cover) the mask of the masking buffer layer for a specific distance. The total internal reflection that could have been resulted from the GaN-based LEDs' higher index of refraction than that of the atmosphere could be avoided. The GaN-based LEDs according to the present invention therefore have superior external quantum efficiency and luminous efficiency.
Owner:FORMOSA EPITAXY INCORPORATION +1

Light-emitting diode and method for manufacturing the same

A light-emitting diode (LED) and a method for manufacturing the same are described. The method for manufacturing the LED comprises the following steps. An illuminant epitaxial structure is provided, in which the illuminant epitaxial structure has a first surface and a second surface on opposite sides, and a substrate is deposed on the first surface of the illuminant epitaxial structure. A metal layer is formed on the second surface of the illuminant epitaxial structure. An anodic oxidization step is performed to oxidize the metal layer, so as to form a metal oxide layer. An etching step is performed to remove a portion of the metal oxide layer, so as to form a plurality of holes in the metal oxide layer.
Owner:EPISTAR CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products