Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

37results about How to "Strong fluorescence emission properties" patented technology

Thiophene compound having sulfonyl group and process for producing the same

A thiophene compound having sulfonyl groups which is represented by the formula [1]. It has high heat resistance and high unsusceptibility to oxidation and can improve solubility and dispersibility in various solvents. [In the formula, R1 and R2 each independently represents hydrogen, halogeno, cyano, etc.; and R3 and R3' each independently represents C1-20 alkyl, C1-20 haloalkyl, phenyl optionally substituted by W, thienyl optionally substituted by W, etc. (W represents chlorine, etc.)].
Owner:NISSAN CHEM CORP

Long-wavelength fluorescent probe for detecting hydrazine and synthetic method and application of long-wavelength fluorescent probe

The invention discloses a long-wavelength fluorescent probe for detecting hydrazine and a synthetic method and application of the long-wavelength fluorescent probe, and belongs to the technical field of chemical analysis and detection. The probe is obtained through condensation of a tricyanofuran large pi system and acetyl, and comprises the following structure (please see the specifications for the structure), wherein R1 and R2 are selected from any one of alkyl chains with the number of carbon atoms from one to eighteen; n1 is 1, or 2 or 3; and n2 is selected from any one of integers of 0-17. Fluorophore of the probe is of a tricyanofuran large pi system framework structure, and a response group to the hydrazine is a fatty acid unit. Molecules of the probe have high selectivity and sensitivity to the hydrazine, the detection range is 1.0-50 [mu]mol / L<1>, and the limit of detection is 0.13[mu]mol / L<1>. The long-wavelength fluorescent probe can be used for detecting hydrazine in water, soil and cells.
Owner:SHANGQIU NORMAL UNIVERSITY

Method for preparing nitrogen-doped graphene quantum dot material

The invention provides a stable method for preparing a nitrogen-doped graphene quantum dot material. The preparation method comprises the following steps: dispersing networked reduced graphene oxide in concentrated nitric acid, and heating in an oil bath to a temperature of 140-160 DEG C while magnetic stirring, and reacting at a constant temperature for 12-48 hours under circulating water condensation; removing circulating condensate water, continuously evaporating at the constant temperature for 2-3 hours, and cooling to a room temperature; adding ultrapure water for ultrasonic dispersion, filtering, performing rotary evaporation and concentration on the filtrate, and filling in a dialysis bag of 3000-8000Da to dialyze for 24-48 hours; and performing rotary evaporation and concentrationon the dialysate again, and performing vacuum freeze drying, thereby obtaining the nitrogen-doped graphene quantum dots. The luminous stability of the nitrogen-doped graphene quantum dot is improved to a certain degree, and complicated passivating treatment and mixed element doping processes in the traditional process of preparing the doped quantum dots are effectively simplified. Moreover, the charge transfer capacity of the quantum dots is effectively improved, and the application potential in more fields such as photoelectricity, biomedicine and the like is facilitated.
Owner:NORTHWEST NORMAL UNIVERSITY

Fluorescent probe for detecting cysteine, synthetic method of fluorescent probe and application of fluorescent probe

The invention discloses a fluorescent probe for detecting cysteine, a synthetic method of the fluorescent probe and an application of the fluorescent probe, and belongs to the technical field of chemical analysis and detection. A benzothiazole phenothiazine fluorogen with green fluorescence emission reacts with 2, 4-dinitrobenzene sulfonyl chloride to obtain the probe which has a general structural formula as shown in the specification. The fluorogen of the probe is benzothiazole phenothiazine, and a cysteine response group is 2, 4-dinitrobenzene sulfonyl. Probe molecules have high selectivityand sensitivity to the cysteine, detection range is 0-10 micromoles*L<-1>, and detection limit is 0.12 micromole*L<-1>. The probe can be used for detecting the cysteine in water, soil and cells.
Owner:SHANGQIU NORMAL UNIVERSITY

Method for preparing fluorescent nitrogen-doped carbon nanodots from compost humic acid and application thereof

The invention relates to a method for preparing fluorescent nitrogen-doped carbon nanodots by taking compost humic acid as a raw material. The preparation method comprises the following steps: uniformly mixing humic acid and a hydrogen peroxide aqueous solution at room temperature, carrying out hydrothermal reaction, and naturally cooling to room temperature to obtain a reaction solution; carryingout ultrasonic treatment, centrifugation and separation on the reaction liquid at room temperature to obtain supernatant; enabling the supernatant to pass through a water system microporous filter membrane, dialyzing, intercepting to obtain a carbon nano point aqueous solution with the molecular weight of more than 3500Da, and freeze-drying to obtain the solid nitrogen-doped carbon nanodots. According to the invention, high-value recycling of sludge can be realized, and the provided nitrogen-doped carbon nanodot synthesis method is convenient, green and efficient. The prepared nitrogen-dopedcarbon nanodot has high quantum dot yield and high fluorescence emission and can be applied to rapid detection of metal ions, and shows high selectivity and sensitivity for detection of Fe < 3 + >, and the Fe < 3 + > detection effect can be visualized by using an induction strip of a nitrogen-doped carbon nanodot matrix.
Owner:TIANJIN UNIV

A kind of anthracene main chain self-porous polymer and its synthesis method and application

The invention relates to an anthracene main chain type polymer of intrinsic microporosity as well as a synthetic method and application thereof, and belongs to the field of polymers. The molecular weight of the polymer is 4000-400000, the molecular weight distribution is 1.15-3.50, and the specific surface area is 50-800 m<2> / g. The preparation method comprises the following steps: performing a Diels-Alder reaction on anthracene-2,6-diamine and maleimide, or performing a Diels-Alder reaction on anthracene-2,6-diamine and a maleimide derivative to obtain a dianiline monomer; performing a polycondensation reaction on the dianiline monomer by using a Troger base reaction to obtain a polymer; and performing a reverse reaction of the Diels-Alder reaction to remove the maleimide or the maleimidederivative to obtain the anthracene main chain type polymer of intrinsic microporosity. According to the method, the maleimide or the maleimide derivative is used as a protective group of an anthracene functional group, the synthesized polymer has a microporous structure, solubility and light sensitive characteristic, and can be used as a photosensitizer in the fields of organic contaminant degradation and photodynamic preparations.
Owner:HUAZHONG UNIV OF SCI & TECH

A kind of preparation method of nitrogen-doped graphene quantum dot material

The invention provides a stable method for preparing a nitrogen-doped graphene quantum dot material. The preparation method comprises the following steps: dispersing networked reduced graphene oxide in concentrated nitric acid, and heating in an oil bath to a temperature of 140-160 DEG C while magnetic stirring, and reacting at a constant temperature for 12-48 hours under circulating water condensation; removing circulating condensate water, continuously evaporating at the constant temperature for 2-3 hours, and cooling to a room temperature; adding ultrapure water for ultrasonic dispersion, filtering, performing rotary evaporation and concentration on the filtrate, and filling in a dialysis bag of 3000-8000Da to dialyze for 24-48 hours; and performing rotary evaporation and concentrationon the dialysate again, and performing vacuum freeze drying, thereby obtaining the nitrogen-doped graphene quantum dots. The luminous stability of the nitrogen-doped graphene quantum dot is improved to a certain degree, and complicated passivating treatment and mixed element doping processes in the traditional process of preparing the doped quantum dots are effectively simplified. Moreover, the charge transfer capacity of the quantum dots is effectively improved, and the application potential in more fields such as photoelectricity, biomedicine and the like is facilitated.
Owner:NORTHWEST NORMAL UNIVERSITY

Anthracene main chain type polymer of intrinsic microporosity as well as synthetic method and application thereof

The invention relates to an anthracene main chain type polymer of intrinsic microporosity as well as a synthetic method and application thereof, and belongs to the field of polymers. The molecular weight of the polymer is 4000-400000, the molecular weight distribution is 1.15-3.50, and the specific surface area is 50-800 m<2>/g. The preparation method comprises the following steps: performing a Diels-Alder reaction on anthracene-2,6-diamine and maleimide, or performing a Diels-Alder reaction on anthracene-2,6-diamine and a maleimide derivative to obtain a dianiline monomer; performing a polycondensation reaction on the dianiline monomer by using a Troger base reaction to obtain a polymer; and performing a reverse reaction of the Diels-Alder reaction to remove the maleimide or the maleimidederivative to obtain the anthracene main chain type polymer of intrinsic microporosity. According to the method, the maleimide or the maleimide derivative is used as a protective group of an anthracene functional group, the synthesized polymer has a microporous structure, solubility and light sensitive characteristic, and can be used as a photosensitizer in the fields of organic contaminant degradation and photodynamic preparations.
Owner:HUAZHONG UNIV OF SCI & TECH

S-triazine derivative, and preparation method and application thereof

The invention relates to an s-triazine derivative, and a preparation method and application thereof. The structural formula of the derivative is as shown in the specification. The preparation method comprises the following steps: weighing p-fluorobenzaldehyde, 2-(ethylamino)ethanol, cetyl trimethyl ammonium bromide (CTAB) and K2CO3, dissolving in dimethylsulfoxide (DMSO), stirring for 15-30 hours at 80-120 DEG C, and separating to obtain a compound I; and adding 2,4,6-trimethyl s-triazine and KOH into a solvent, stirring for 30 minutes at 60-110 DEG C, dripping an ethanol solution of the compound I, continuously reacting for 15-30 hours at 60-110 DEG C, and separating to obtain the s-triazine derivative. The s-triazine derivative can be grafted on the surface of a glass sheet in a flat-lying manner to form a monomolecular film fluorescence sensor for DNT (dinitrotoluene) detection. Due to the flat-lying grafting manner, the probability of pi-pi stacking formed between fluorescent molecules can be greatly reduced, and the optical property and response sensitivity of fluorescent molecules can be improved.
Owner:QILU UNIV OF TECH

Multi-response azacyclo-formaldehyde fluorescent probe molecule as well as preparation method and application thereof

The invention discloses a multi-response azacyclo-formaldehyde fluorescent probe molecule with a structure shown as a formula I and a preparation method and application thereof, the molecule realizesselective quantitative recognition of formaldehyde through a fluorescence analysis method, and formaldehyde, copper ions and sulfur ions are tested and evaluated in the fields of automotive trim materials, healthy home furnishing, biological medicines and the like. The multi-response azacyclo-formaldehyde fluorescent probe molecule can be used for fluorescence imaging of biological samples, can also be used as an ultraviolet light absorber to be applied to the technical fields of plastics, coatings, printing ink, display, illumination, glasses, daily-use chemical industry, textiles and the like, and in addition, the multi-response azacyclo-formaldehyde fluorescent probe molecule provided by the invention has relatively strong fluorescence emission performance under both solution and solidconditions; can be used as a fluorescent material in the fields of anti-counterfeiting technologies, light conversion materials, fluorescence labeling, fluorescence imaging and the like, wherein R isH or Cl, and X is CH or N.
Owner:INST OF ANALYSIS GUANGDONG ACAD OF SCI (CHINA NAT ANALYTICAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products