Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

705results about "Resistor housing/enclosing/embedding" patented technology

Methods for manufacturing resistors using a sacrificial layer

A method of making resistors includes providing a sacrificial layer. Conductive material is then formed over a region of the sacrificial layer. Resistive material is then deposited over the first surface of the sacrificial layer such that the resistive material covers the sacrificial layer and the conductive material. A portion of the sacrificial layer is then removed to expose the conductive material. A method of making resistors includes the steps of providing a sacrificial layer, removing at least a portion of the sacrificial layer from regions of the sacrificial layer so as to create a plurality of cavities within the sacrificial layer, plating said cavities with a conductive material, disposing resistive material over the first surface of the sacrificial layer such that resistive material covers the sacrificial layer and said conductive material, and removing at least a portion of said sacrificial layer to expose the conductive material. In another embodiment, a method of making resistors includes the steps of providing a sacrificial layer having a roughened first surface and a second surface, depositing resistive material over the first surface of the sacrificial layer such that the resistive material covers the first surface of the sacrificial layer, and selectively etching the sacrificial layer to form electrodes.
Owner:TESSERA INC

Trim resistor connector and sensor system

An improved IDC trim resistor connector assembly made up of a generally open top cup shape connector with side wall slots and an interior first array of terminal posts arranged for passage therethrough of a first lead wire of sensor circuitry. A first stamped metal IDC terminal is push-on mounted on the terminal posts for IDC cradling and electrically and mechanically receiving and connecting to the first lead wire. A conventional trim resistor substrate is loose mounted but accurately positioned on the connector bottom wall and has an "E" pattern of resistive material adapted for center leg laser trimming to calibrate the associated sensor circuitry. A first IDC terminal spring leg overlap contacts one side leg of the trim resistor E-pattern and thereby spring clamps the resistor substrate. A cover is snap-latch mounted on the connector and has an access opening to enable laser trimming of the trim resistor after cover installation. One end of a second lead wire is received in a second IDC metal terminal in turn mounted on a second array of connector-interior terminal posts and also having a spring leg overlap electrically contacting and clamping the other E-pattern side leg. Spring barbs on the terminals anchor the same once fully inserted downwardly onto the terminal posts. Connector locking tangs and cover locking ears provide snap-on retention of the cover on the connector, and press-in/keeper internal cover projections cause push-down assembly of the lead wires as the cover is latched onto the connector. Cover locking tangs and cap latching ears provide snap-together locking of a cap on the cover when the cap is pushed down on the cover to seal the access opening after completion of laser trimming and in-filling of the covered container with sealant. In a second embodiment a crimp-type terminal, also provided with a spring clamping leg, is fastened to the second lead wire and has a barbed mounting strap clasping a modified second terminal post array when fully installed thereon.
Owner:DELPHI TECH INC

Method to embed thick film components

The invention is directed to a method to embed a thick film resistor composition into a printed wiring board comprising the steps of applying a reinforcing composition onto a resistor composition disposed on a metallic substrate forming an assembly wherein the resistor composition is at least partially coated with the reinforcing composition; processing the assembly; and applying the assembly onto at least one side of an organic substrate forming a component wherein the organic substrate is at least partially coated with an adhesive layer and wherein the reinforcing composition side of the assembly is embedded into the adhesive layer. The reinforcing composition allows laser trimming of the fired resistor and also eliminates cracking during lamination steps of the invention.
Owner:CHEMTRON RES

Resistor device

The resistor device is provided with a resistive plate (11) of metal plate material, which is used as a resistance body; a radiative plate (15) of metal plate material, which is spaced from the resistive plate and intercrossed on the resistive plate; a molded resin body (19), which encloses an intercrossing portion of the resistive plate and the radiative plate; terminal portions of the resistive plate (11a), which comprises so that both ends of the resistive plate extending from the molded resin body are bent along an end face and a bottom face of the molded resin body; and terminal portions of the radiative plate (15a), which comprises so that both ends of the radiative plate extending from the molded resin body are bent along an end face and a bottom face of the molded resin body. Accordingly, the surface-mountable resin-sealed metal plate resistor device is enabled to increase the power capacity drastically and to improve the reliability without changing most of the size.
Owner:KOA CORP

Low resistance value resistor

The low resistance value resistor 11 has two electrodes 12,13 of metal strips having a high electrical conductivity. The metal strips are affixed on the resistor body by means of rolling and / or thermal diffusion bonding. A fused solder layer is formed on a surface of each electrode comprised by the metal strip. Thus, sufficient bonding strength and superior current distribution in the resistor body is obtained. Further, a portion of the resistor body is trimmed by removing a portion of the body material along a direction of current flow between the electrodes to adjust a resistance value. Thus, a precise resistor value and superior characteristics of temperature coefficient of resistance (TCR) can be obtained.
Owner:KOA CORP

Chip resistor and method for manufacturing the same

A chip resistor includes an upper electrode provided on a substrate, a resistor element connected to the upper electrode, and a side electrode connected to the upper electrode. The side electrode, arranged on a side surface of the substrate, has two portions overlapping with the obverse surface and reverse surface of the substrate, respectively. An intermediate electrode covers the side electrode, and an external electrode covers the intermediate electrode. A first protective layer is disposed between the upper electrode and the intermediate electrode, and held in contact with the upper electrode and the side electrode. The first protective layer is more resistant to sulfurization than the upper electrode. A second protective layer is disposed between the first protective layer and intermediate electrode, and held in contact with the first protective layer, side electrode and intermediate electrode.
Owner:ROHM CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products