Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

142 results about "Self-aligned gate" patented technology

In electronics, a self-aligned gate is a transistor manufacturing feature whereby a refractory gate electrode region of a MOSFET (metal–oxide–semiconductor field-effect transistor) is used as a mask for the doping of the source and drain regions. This technique ensures that the gate will slightly overlap the edges of the source and drain.

Self aligned gate JFET structure and method

InactiveUS20070284628A1Eliminates lithography issuesTransistorSalicideElectrical conductor
A JFET integrated onto a substrate having a semiconductor layer at least and having source and drain contacts over an active area and made of first polysilicon (or other conductors such as refractive metal or silicide) and a self-aligned gate contact made of second polysilicon which has been polished back to be flush with a top surface of a dielectric layer covering the tops of the source and drain contacts. The dielectric layer preferably has a nitride cap to act as a polish stop. In some embodiments, nitride covers the entire dielectric layer covering the source and drain contacts as well as the field oxide region defining an active area for said JFET. An embodiment with an epitaxially grown channel region formed on the surface of the substrate is also disclosed.
Owner:MIE FUJITSU SEMICON

Graphene and Nanotube/Nanowire Transistor with a Self-Aligned Gate Structure on Transparent Substrates and Method of Making Same

Transistor devices having a self-aligned gate structure on transparent substrates and techniques for fabrication thereof are provided. In one aspect, a method of fabricating a transistor device includes the following steps. A channel material is formed on a transparent substrate. Source and drain electrodes are formed in contact with the channel material. A dielectric layer is deposited on the channel material. A photoresist is deposited on the dielectric layer and developed using UV light exposure through the transparent substrate. A gate metal(s) is deposited on the exposed portions of the dielectric layer and the undeveloped portions of the photoresist. The undeveloped portions of the photoresist are removed along with portions of the gate metal over the source and drain regions to form a gate of the device on the dielectric layer over the channel material which is self-aligned to the source and drain electrodes.
Owner:GLOBALFOUNDRIES US INC

Method for fabricating a self aligned contact which eliminates the key hole problem using a two step spacer deposition

This invention provides a method for forming a self aligned contact without key holes using a two step sidewall spacer deposition. The process begins by providing a semiconductor structure having a device layer, a first inter poly oxide layer (IPO-1), and a conductive structure (such as a bit line) thereover, and having a contact area on the device layer adjacent to the conductive structure. The semiconductor structure can further include an optional etch stop layer overlying the first inter poly oxide layer. The conductive structure comprises at least one conductive layer with a hard mask thereover. A first spacer layer is formed over the hard mask and the IPO-1 layer and anisotropically etched to form first sidewall spacers on the sidewalls of the conductive structure up to a level above the bottom of the hard mask and below the level of the top of the hard mask such that the profile of the first sidewall spacers are not concave at any point. A second spacer layer is formed over the first sidewall spacers and anisotropically etched to form second sidewall spacers, having a profile that is not concave at any point. A second inter poly oxide layer is formed over the second sidewall spacers, the hard mask, and the IPO-1 layer, whereby the second inter poly oxide layer is free from key holes. A contact opening is formed in the second inter poly oxide layer and the first inter poly oxide layer over the contact area. A contact plug is formed in the contact openings.
Owner:TAIWAN SEMICON MFG CO LTD

Recessed Channel Insulated-Gate Field Effect Transistor with Self-Aligned Gate and Increased Channel Length

A metal-oxide-semiconductor transistor (MOS) and method of fabricating the same, in which the effective channel length is increased relative to the width of the gate electrode. A dummy gate electrode overlying dummy gate dielectric material is formed at the surface of the structure, with self-aligned source / drain regions, and dielectric spacers on the sidewalls of the dummy gate structure. The dummy gate dielectric underlies the sidewall spacers. Following removal of the dummy gate electrode and the underlying dummy gate dielectric material, including from under the spacers, a silicon etch is performed to form a recess in the underlying substrate. This etch is self-limiting on the undercut sides, due to the crystal orientation, relative to the etch of the bottom of the recess. The gate dielectric and gate electrode material are then deposited into the remaining void, for example to form a high-k metal gate MOS transistor.
Owner:TEXAS INSTR INC

Fabrication of self-aligned gate contacts and source/drain contacts directly above gate electrodes and source/drains

A method of forming an active device having self-aligned source / drain contacts and gate contacts, including, forming an active area on a substrate, where the active area includes a device channel; forming two or more gate structures on the device channel; forming a plurality of source / drains on the active area adjacent to the two or more gate structures and device channel; forming a protective layer on the surfaces of the two or more gate structures, plurality of source / drains, and active layer; forming an interlayer dielectric layer on the protective layer; removing a portion of the interlayer dielectric and protective layer to form openings, where each opening exposes a portion of one of the plurality of source / drains; forming a source / drain contact liner in at least one of the plurality of openings; and forming a source / drain contact fill on the source / drain contact liner.
Owner:IBM CORP

Self-aligned gated carbon nanotube field emitter structures and associated methods of fabrication

InactiveUS20050067936A1Simple and cost-effective and efficientDischarge tube luminescnet screensElectric discharge tubesElectrical conductorField line
A method for fabricating a self-aligned gated carbon nanotube field emitter structure includes providing a substrate, depositing a dielectric material on the surface of the substrate and depositing a conductor layer on the surface of the dielectric material. The method also includes selectively etching the conductor layer to form an opening and selectively etching the dielectric material to form a micro-cavity. The method further includes depositing a base layer structure in the micro-cavity adjacent to the surface of the substrate, wherein the base layer structure has a substantially conical shape, and depositing a catalyst on a portion of the surface of the base layer structure, wherein the catalyst is suitable for growing at least one carbon nanotube. The method still further includes applying an electrical potential to the substrate and the conductor layer, wherein the electrical potential generates a plurality of electrical field lines that are deflected around the surface of the base layer structure, and wherein the plurality of electrical field lines have a strength that is greatest in a direction substantially perpendicular to the surface of the substrate. Finally, the method includes growing at least one carbon nanotube from the catalyst in the presence of the plurality of electrical field lines, wherein the at least one carbon nanotube is grown in a direction substantially perpendicular to the surface of the substrate.
Owner:GENERAL ELECTRIC CO

Method for fabricating recessed gate mos transistor device

A method of fabricating self-aligned gate trench utilizing TTO poly spacer is disclosed. A semiconductor substrate having thereon a pad oxide layer and pad nitride layer is provided. A plurality of trench capacitors are embedded in a memory array region of the semiconductor substrate. Each of the trench capacitors has a trench top oxide (TTO) that extrudes from a main surface of the semiconductor substrate. Poly spacers are formed on two opposite sides of the extruding TTO and are used, after oxidized, as an etching hard mask for etching a recessed gate trench in close proximity to the trench capacitor.
Owner:NAN YA TECH

Replacement metal gate scheme with self-alignment gate for vertical field effect transistors

A method is presented for forming a semiconductor structure. The method includes forming a fin structure over a substrate, forming a dummy gate over the fin structure, and etching the dummy gate by a first amount to expose a top portion of the fin structure. The method further includes forming a first dielectric layer adjacent the exposed top portion of the fin structure, forming a spacer adjacent the first dielectric layer contacting the fin structure, and etching the dummy gate by a second amount. The method further includes depositing a second dielectric layer to encapsulate the remaining dummy gate, depositing an inter-level dielectric (ILD) over the second dielectric layer, depositing at least one hard mask to access the dummy gate, stripping the dummy gate to form at least one recess, and filling the at least one recess with a high-k metal gate (HKMG).
Owner:IBM CORP

CMOS structure with non-epitaxial raised source/drain and self-aligned gate and method of manufacture

A CMOS structure and method of achieving self-aligned raised source / drain for CMOS structures on SOI without relying on selective epitaxial growth of silicon. In the method, CMOS structures are provided by performing sacraficial oxidation so that oxidation occurs on the surface of both the SOI and BOX interface. This allows for oxide spacer formation for gate-to-source / drain isolation which makes raised source / drain fabrication without increasing contact resistance possible.
Owner:IBM CORP

Self-aligned gated rod field emission device and associated method of fabrication

A self-aligned gated field emission device and an associated method of fabrication are described. The device includes a substrate and a porous layer disposed adjacent to the surface of the substrate, wherein the porous layer defines a plurality of substantially cylindrical channels, each of the plurality of substantially cylindrical channels aligned substantially parallel to one another and substantially perpendicular to the surface of the substrate. The device also includes a plurality of substantially rod-shaped structures disposed within at least a portion of the plurality of substantially cylindrical channels defined by the porous layer and adjacent to the surface of the substrate, wherein a portion of each of the plurality of substantially rod-shaped structures protrudes above the surface of the porous layer. The device further includes a gate dielectric layer disposed on the surface of the porous layer, wherein the gate dielectric layer is disposed between the plurality of substantially rod-shaped structures. The device still further includes a conductive layer selectively disposed on the surface of the gate dielectric layer, wherein the conductive layer is selectively disposed between the plurality of substantially rod-shaped structures.
Owner:GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products